Gold nanomaterials for the selective capturing and SERS diagnosis of toxins in aqueous and biological fluids - DTU Orbit (16/12/2018)

Gold nanomaterials for the selective capturing and SERS diagnosis of toxins in aqueous and biological fluids

A highly sensitive nanosensing method for the combined selective capture and SERS detection of Microcystin-LR (MC-LR) in blood plasma has been developed. The new method utilizes gold coated magnetic nanoparticles that are functionalized with anti MC-LR antibody Fab’ fragments for the selective capture of MC-LR from aqueous media and blood plasma. Using an oriented immobilization approach, the Fab’ fragments are covalently attached to gold surface to form a monolayer with high capture efficiency towards the toxin. After the selective capture, the purified MC-LR molecules were released from the extractor nanoparticles within 5min by manipulating the pH environment of the nanoparticles. The regenerated extractor nanoparticles maintained their capture efficiency and, therefore, were re-used to capture of MC-LR from successive samples. The released purified toxin was screened within 10min on gold coated silicon nanopillars and a new paper-based SERS substrate by handheld Raman spectrometer. The SERS enhancement factors of the nanopillars and the new paper-based substrate were 2.5×10^6 and 3×10^5 respectively. The lower limit of quantification (LOQ) of MC-LR by SERS on the nanopillar substrate was 10fM ($R^2=0.9975$) which is well below the clinically required detection limit of the toxin. The SERS determination of MC-LR was cross validated against ELISA. By using antibody fragments that are specific to the target biomolecule, the new methodology can be extended to the rapid extraction and detection of other toxins and proteins.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, Queensland University of Technology
Number of pages: 9
Pages: 664-672
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Biosensors and Bioelectronics
Volume: 91
ISSN (Print): 0956-5663
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 7.83 SJR 2.373 SNIP 1.65
Web of Science (2017): Impact factor 8.173
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 7.22 SJR 2.095 SNIP 1.619
Web of Science (2016): Impact factor 7.78
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 7.07 SJR 2.044 SNIP 1.671
Web of Science (2015): Impact factor 7.476
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 6.57 SJR 2.057 SNIP 1.716
Web of Science (2014): Impact factor 6.409
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 6.34 SJR 2.029 SNIP 1.726
Web of Science (2013): Impact factor 6.451
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.7 SJR 2.397 SNIP 1.592
Web of Science (2012): Impact factor 5.437
ISI indexed (2012): ISI indexed yes