Globally Optimal Segmentation of Permanent-Magnet Systems

Permanent-magnet systems are widely used for generation of magnetic fields with specific properties. The reciprocity theorem, an energy-equivalence principle in magnetostatics, can be employed to calculate the optimal remanent flux density of the permanent-magnet system, given any objective functional that is linear in the magnetic field. This approach, however, yields a continuously varying remanent flux density, while in practical applications, magnetic assemblies are realized by combining uniformly magnetized segments. The problem of determining the optimal shape of each of these segments remains unsolved. We show that the problem of optimal segmentation of a two-dimensional permanent-magnet assembly with respect to a linear objective functional can be reduced to the problem of piecewise linear approximation of a plane curve by perimeter maximization. Once the problem has been cast into this form, the globally optimal solution can be easily computed employing dynamic programming.

General information
Publication status: Published
Organisations: Department of Energy Conversion and Storage, Electrofunctional materials, Secretariat, IT
Contributors: Insinga, A. R., Bjørk, R., Smith, A., Bahl, C.
Number of pages: 16
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Physical Review Applied
Volume: 5
Issue number: 6
Article number: 064014
ISSN (Print): 2331-7019
Ratings:
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.83 SJR 2.449 SNIP 1.602
Web of Science (2016): Impact factor 4.808
Web of Science (2016): Indexed yes
Original language: English
Electronic versions:
DOIs:
10.1103/PhysRevApplied.5.064014
Source: FindIt
Source-ID: 2306167446
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review