Glioblastoma adaptation traced through decline of an IDH1 clonal driver and macro-evolution of a double-minute chromosome - DTU Orbit (15/03/2019)

Glioblastoma adaptation traced through decline of an IDH1 clonal driver and macro-evolution of a double-minute chromosome

Background: Glioblastoma (GBM) is the most common malignant brain cancer occurring in adults, and is associated with dismal outcome and few therapeutic options. GBM has been shown to predominantly disrupt three core pathways through somatic aberrations, rendering it ideal for precision medicine approaches.

Methods: We describe a 35 year-old female patient with recurrent GBM following surgical removal of the primary tumor, adjuvant treatment with temozolomide, and a 3-year disease-free period. Rapid whole genome sequencing (WGS) of three separate tumour regions at recurrence was performed and interpreted relative to WGS of two regions of the primary tumour.

Results We found extensive mutational and copy number heterogeneity within the primary tumour. We identified a TP53 mutation and two focal amplifications involving PDGFRA, KIT and CDK4, on chromosomes 4 and 12. A clonal IDH1 R132H mutation in the primary, a known GBM driver event, was detectable at only very low frequency in the recurrent tumour. After subclonal diversification, evidence was found for a whole genome-doubling event and a translocation between the amplified regions of PDGFRA, KIT and CDK4, encoded within a double minute chromosome also incorporating miR26a-2. The WGS analysis uncovered progressive evolution of the double minute chromosome converging on the KIT/PDGFRα/PI3K/mTOR axis, superseding the IDH1 mutation in dominance in a mutually exclusive manner at recurrence, consequently the patient was treated with imatinib. Despite rapid sequencing and cancer-genome guided therapy against amplified oncogenes, the disease progressed, and the patient died shortly after.

Conclusions: This case sheds light on the dynamic evolution of a GBM tumor, defining the origins of the lethal subclone, the macroevolutionary genomic events dominating the disease at recurrence and the loss of a clonal driver. Even in the era of rapid WGS analysis, cases such as this illustrate the significant hurdles for precision medicine success.

General information

State: Published
Organisations: Department of Systems Biology, Center for Biological Sequence Analysis, Cancer Systems Biology, NantOnics, Illumina Ltd., Cancer Research UK, London Research Institute
Number of pages: 8
Pages: 880-887
Publication date: 2015
Peer-reviewed: Yes

Publication information

Journal: Annals of Oncology
Volume: 26
Issue number: 5
ISSN (Print): 0923-7534
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 8.97 SJR 5.599 SNIP 3.46
Web of Science (2017): Impact factor 13.926
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 8.09 SJR 5.096 SNIP 3.123
Web of Science (2016): Impact factor 11.855
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 7.39 SJR 4.337 SNIP 2.839
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 6.2 SJR 3.723 SNIP 2.539
Web of Science (2014): Impact factor 7.04
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 5.66 SJR 3.175 SNIP 2.431
Web of Science (2013): Impact factor 6.578
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.77 SJR 3.25 SNIP 2.537
Web of Science (2012): Impact factor 7.384
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 5.04 SJR 2.82 SNIP 2.135
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.498 SNIP 2.014
Web of Science (2010): Impact factor 6.452
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2.396 SNIP 1.771
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.242 SNIP 1.645
Scopus rating (2007): SJR 2.147 SNIP 1.642
Scopus rating (2006): SJR 1.918 SNIP 1.746
Scopus rating (2005): SJR 1.67 SNIP 1.579
Scopus rating (2004): SJR 1.67 SNIP 1.562
Scopus rating (2003): SJR 1.27 SNIP 1.372
Scopus rating (2002): SJR 1.147 SNIP 1.169
Scopus rating (2001): SJR 1.098 SNIP 1.225
Scopus rating (2000): SJR 0.703 SNIP 1.2
Scopus rating (1999): SJR 0.841 SNIP 1.14
Original language: English
Keywords: Glioblastoma, Multi-region sequencing, Intra-tumour heterogeneity, Double minute chromosome
Electronic versions:
Ann_Oncol_2015_Favero_annonc_mdv127.pdf
Glioblastoma_adaptation_traced_through.pdf
DOIs: 10.1093/annonc/mdv127

Bibliographical note
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License. which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Source: PublicationPreSubmission
Source-ID: 106638232
Research output: Research - peer-review , Journal article – Annual report year: 2015