Glacial/interglacial variations of meridional transport and washout of dust: a one-dimensional model

Publication: Research - peer-reviewJournal article – Annual report year: 1998

Without internal affiliation

Documents

DOI

View graph of relations

Measurements of δ18O and insoluble dust in the Greenland Ice Core Project ice core reveal that the concentration of dust is about 100 times higher in ice from the last glacial maximum than it is today. In order to understand the glacial climate it is of importance to establish to what extent this increased level was due to changes in the source areas and to what extent it was due to changes in the atmospheric transportation. The authors present a one-dimensional model evaluating the effect of changes in the zonally averaged atmospheric circulation on the atmospheric hydrological cycle and dust transportation. The main characteristics of the altered climate during glacial periods are assumed to be increased baroclinicity, an equatorward displacement of the baroclinic zone, and reduced evaporation. The model reproduces the zonally averaged hydrological cycle of the present climate reasonably well, and it produces a halving of snow accumulation in polar areas for glacial periods. From the ice core data the authors obtain a power law dependence between the concentration of dust in the ice and the accumulation related to long-term climate variations. With the input of dust to the atmosphere being independent of the simulated climate, the model reproduces this power law. The obtained power is strongly dependent on the assumed position of the dust sources. For reasonable estimates of the present-day dust sources the simulated mechanism may account for a twofold to sixfold increase in dust concentration in polar ice from interglacial to full glacial conditions. Concurrently, the atmospheric content of dust is increased at all latitudes during the glacial period.
Original languageEnglish
JournalJournal of Geophysical Research
Volume103
Issue numberD8
Pages (from-to)8955-8962
Number of pages8
ISSN0148-0227
DOIs
StatePublished - 1998
Externally publishedYes

Bibliographical note

Copyright 1998 by the American Geophysical Union.

CitationsWeb of Science® Times Cited: 12
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 130111891