Geostatistical inference using crosshole ground-penetrating radar

Publication: Research - peer-reviewJournal article – Annual report year: 2010

Documents

DOI

View graph of relations

High-resolution tomographic images obtained from crosshole geophysical measurements have the potential to provide valuable information about the geostatistical properties of unsaturated-zone hydrologic-state va riables such as moisture content. Under drained or quasi-steady-state conditions, the moisture content will reflect the variation of the physical properties of the subsurface, which determine the flow patterns in the unsaturated zone. Deterministic least-squares inversion of crosshole groundpenetrating-radar GPR traveltimes result in smooth, minimumvariance estimates of the subsurface radar wave velocity structure, which may diminish the utility of these images for geostatistical inference. We have used a linearized stochastic inversion technique to infer the geostatistical properties of the subsurface radar wave velocity distribution using crosshole GPR traveltimes directly. Expanding on a previous study, we have determined that it is possible to obtain estimates of global variance and mean velocity values of the subsurface as well as the correlation lengths describing the subsurface velocity structures. Accurate estimation of the global variance is crucial if stochastic realizations of the subsurface are used to evaluate the uncertainty of the inversion estimate. We have explored the full potential of the geostatistical inference method using several synthetic models of varying correlation structures and have tested the influence of different assumptions concerning the choice of covariance function and data noise level. In addition, we have tested the methodology on traveltime data collected at a field site in Denmark. There, inferred correlation structures indicate that structural differences exist between two areas located approximately 10 m apart, an observation confirmed by a GPR reflection profile. Furthermore, the inferred values of the subsurface global variance and the mean velocity have been corroborated with moisturecontent measurements, obtained gravimetrically from samples collected at the field site.
Original languageEnglish
JournalGeophysics
Publication date2010
Volume75
Issue6
PagesJ29-J41
ISSN0016-8033
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 4
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 5823591