Geospatial Big Data Handling Theory and Methods: A Review and Research Challenges - DTU Orbit (17/12/2018)

Geospatial Big Data Handling Theory and Methods: A Review and Research Challenges

Big data has now become a strong focus of global interest that is increasingly attracting the attention of academia, industry, government and other organizations. Big data can be situated in the disciplinary area of traditional geospatial data handling theory and methods. The increasing volume and varying format of collected geospatial big data presents challenges in storing, managing, processing, analyzing, visualizing and verifying the quality of data. This has implications for the quality of decisions made with big data. Consequently, this position paper of the International Society for Photogrammetry and Remote Sensing (ISPRS) Technical Commission II (TC II) revisits the existing geospatial data handling methods and theories to determine if they are still capable of handling emerging geospatial big data. Further, the paper synthesises problems, major issues and challenges with current developments as well as recommending what needs to be developed further in the near future.

General information
State: Published
Organisations: National Space Institute, Geodesy, Ryerson University, Simon Fraser University, Leibniz Universität Hannover, University of Melbourne, University of Zurich, University of New South Wales, University of Gävle, University College London, University of Twente
Pages: 119-133
Publication date: 2016
Peer-reviewed: Yes

Publication information
Volume: 115
ISSN (Print): 0924-2716
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 7.76 SJR 3.169 SNIP 3.004
Web of Science (2017): Impact factor 5.994
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 6.46 SJR 2.773 SNIP 3.027
Web of Science (2016): Impact factor 6.387
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 5.41 SJR 2.371 SNIP 2.812
Web of Science (2015): Impact factor 4.188
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.6 SJR 1.881 SNIP 2.615
Web of Science (2014): Impact factor 3.132
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.56 SJR 2.314 SNIP 2.924
Web of Science (2013): Impact factor 2.902
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 4.19 SJR 2.257 SNIP 3.409
Web of Science (2012): Impact factor 3.313
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 4.16 SJR 2.183 SNIP 3.304
Web of Science (2011): Impact factor 2.885
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.607 SNIP 4.008
Web of Science (2010): Impact factor 2.184
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.935 SNIP 3.667
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.643 SNIP 3.182
Scopus rating (2007): SJR 1.629 SNIP 3.039
Scopus rating (2006): SJR 1.709 SNIP 3.869
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.728 SNIP 3.965
Scopus rating (2004): SJR 1.707 SNIP 2.301
Scopus rating (2003): SJR 0.667 SNIP 1.407
Scopus rating (2002): SJR 0.941 SNIP 2.31
Scopus rating (2001): SJR 1.093 SNIP 1.701
Scopus rating (2000): SJR 0.48 SNIP 0.931
Scopus rating (1999): SJR 0.527 SNIP 1.059
Original language: English
Keywords: Big data, Geospatial, Data handling, Analytics, Spatial Modeling, Review
Electronic versions:
PHOTO_D_15_00278R1B.pdf
DOIs:
10.1016/j.isprsjprs.2015.10.012
Research output: Research - peer-review › Journal article – Annual report year: 2015