Geometry and transport in a model of two coupled quadratic nonlinear waveguides

Publication: Research - peer-reviewJournal article – Annual report year: 2008

View graph of relations

This paper applies geometric methods developed to understand chaos and transport in Hamiltonian systems to the study of power distribution in nonlinear waveguide arrays. The specific case of two linearly coupled chi(2) waveguides is modeled and analyzed in terms of transport and geometry in the phase space. This gives us a transport problem in the phase space resulting from the coupling of the two Hamiltonian systems for each waveguide. In particular, the effect of the presence of partial and complete barriers in the phase space on the transfer of intensity between the waveguides is studied, given a specific input and range of material properties. We show how these barriers break down as the coupling between the waveguides is increased and what the role of resonances in the phase space has in this. We also show how an increase in the coupling can lead to chaos and global transport and what effect this has on the intensity. ©2008 American Institute of Physics
Original languageEnglish
JournalChaos
Publication date2008
Volume18
Journal number1
Pages013116
ISSN1054-1500
DOIs
StatePublished

Bibliographical note

Copyright (2008) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

CitationsWeb of Science® Times Cited: 1
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 4802688