Genome-wide fitness analyses of the foodborne pathogen Campylobacter jejuni in vitro and in vivo models - DTU Orbit (11/03/2019)

Genome-wide fitness analyses of the foodborne pathogen Campylobacter jejuni in vitro and in vivo models

Campylobacter is the most common cause of foodborne bacterial illness worldwide. Faecal contamination of meat, especially chicken, during processing represents a key route of transmission to humans. There is a lack of insight into the mechanisms driving C. jejuni growth and survival within hosts and the environment. Here, we report a detailed analysis of C. jejuni fitness across models reflecting stages in its life cycle. Transposon (Tn) gene-inactivation libraries were generated in three C. jejuni strains and the impact on fitness during chicken colonisation, survival in houseflies and under nutrient-rich and -poor conditions at 4 degrees C and infection of human gut epithelial cells was assessed by Tn-insertion site sequencing (Tn-seq). A total of 331 homologous gene clusters were essential for fitness during in vitro growth in three C. jejuni strains, revealing that a large part of its genome is dedicated to growth. We report novel C. jejuni factors essential throughout its life cycle. Importantly, we identified genes that fulfil important roles across multiple conditions. Our comprehensive screens showed which flagella elements are essential for growth and which are vital to the interaction with host organisms. Future efforts should focus on how to exploit this knowledge to effectively control infections caused by C. jejuni.

General information
State: Published
Organisations: National Food Institute, Research Group for Microbial Food Safety
Number of pages: 17
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Scientific Reports
Volume: 7
Article number: 1251
ISSN (Print): 2045-2322
Ratings:
 BFI (2019): BFI-level 1
 Web of Science (2019): Indexed yes
 BFI (2018): BFI-level 1
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 1
 Scopus rating (2017): CiteScore 4.36 SJR 1.533 SNIP 1.245
 Web of Science (2017): Impact factor 4.122
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 1
 Scopus rating (2016): CiteScore 4.63 SJR 1.692 SNIP 1.354
 Web of Science (2016): Impact factor 4.259
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 1
 Scopus rating (2015): CiteScore 5.3 SJR 2.034 SNIP 1.597
 Web of Science (2015): Impact factor 5.228
 Web of Science (2015): Indexed yes
 BFI (2014): BFI-level 1
 Scopus rating (2014): CiteScore 4.75 SJR 2.163 SNIP 1.554
 Web of Science (2014): Impact factor 5.578
 Web of Science (2014): Indexed yes
 BFI (2013): BFI-level 1
 Scopus rating (2013): CiteScore 4.06 SJR 1.998 SNIP 1.57
 Web of Science (2013): Impact factor 5.078
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 BFI (2012): BFI-level 1
 Scopus rating (2012): CiteScore 2.44 SJR 1.531 SNIP 0.962