Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis - DTU Orbit (17/02/2019)

Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries 1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis.
Web of Science (2014): Impact factor 29.352
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 24.17 SJR 24.193 SNIP 6.287
Web of Science (2013): Impact factor 29.648
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 27.17 SJR 25.621 SNIP 7.137
Web of Science (2012): Impact factor 35.209
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 25.75 SJR 25.298 SNIP 7.206
Web of Science (2011): Impact factor 35.532
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Web of Science (2010): Impact factor 36.377
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 20.87 SNIP 5.222
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 17.931 SNIP 4.809
Web of Science (2007): Indexed yes
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 14.345 SNIP 5.272
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 13.814 SNIP 5.329
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 13.523 SNIP 5.059
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 13.631 SNIP 5.2
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 15.204 SNIP 5.584
Web of Science (2001): Indexed yes
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 14.31 SNIP 5.164
Original language: English
DOIs:
10.1038/s41588-018-0157-1
Source: Scopus
Source-ID: 85049975477
Research output: Research - peer-review › Journal article – Annual report year: 2018