Genome-wide assessment of the association of rare and common copy number variations to testicular germ cell cancer.

Testicular germ cell cancer (TGCC) is one of the most heritable forms of cancer. Previous genome-wide association studies have focused on single nucleotide polymorphisms, largely ignoring the influence of copy number variants (CNVs). Here we present a genome-wide study of CNV on a cohort of 212 cases and 437 controls from Denmark, which was genotyped at ~1.8 million markers, half of which were non-polymorphic copy number markers. No association of common variants were found, whereas analysis of rare variants (present in less than 1% of the samples) initially indicated a single gene with significantly higher accumulation of rare CNVs in cases as compared to controls, at the gene PTPN1 (P = 3.8 × 10(-2), 0.9% of cases and 0% of controls). However, the CNV could not be verified by qPCR in the affected samples. Further, the CNV calling of the array-data was validated by sequencing of the GSTM1 gene, which showed that the CNV frequency was in complete agreement between the two platforms. This study therefore disconfirms the hypothesis that there exists a single CNV locus with a major effect size that predisposes to TGCC. Genome-wide pathway association analysis indicated a weak association of rare CNVs related to cell migration (false-discovery rate = 0.021, 1.8% of cases and 1.1% of controls). Dysregulation during migration of primordial germ cells has previously been suspected to be a part of TGCC development and this set of multiple rare variants may thereby have a minor contribution to an increased susceptibility of TGCCs.

General information
State: Published
Organisations: Center for Biological Sequence Analysis, Department of Systems Biology, Copenhagen University Hospital
Number of pages: 9
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Frontiers in Endocrinology
Volume: 4
ISSN (Print): 1664-2392
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4 SJR 1.79 SNIP 1.249
Web of Science (2017): Impact factor 3.519
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.72 SJR 1.8 SNIP 1.154
Web of Science (2016): Impact factor 3.675
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.69 SJR 1.865 SNIP 1.05
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.21 SJR 1.467 SNIP 0.862
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.35 SJR 1.074 SNIP 0.633
ISI indexed (2013): ISI indexed no
Scopus rating (2012): CiteScore 0.79 SJR 0.361 SNIP 0.354
ISI indexed (2012): ISI indexed no
Scopus rating (2011): SJR 0.13 SNIP 0.05
ISI indexed (2011): ISI indexed no
Original language: English
Electronic versions:
fendo_04_00002_1.pdf
DOIs:
10.3389/fendo.2013.00002