Genome-Scale Metabolic Reconstruction of Actinomycetes for Antibiotics Production - DTU Orbit (25/02/2019)

Genome-Scale Metabolic Reconstruction of Actinomycetes for Antibiotics Production

Systems biology approaches are increasingly applied to explore the potential of actinomycetes for the discovery and optimal production of antibiotics. In particular, genome-scale metabolic models (GEMs) of various actinomycetes are reconstructed at a faster rate in recent years, which has opened avenues to study interaction between primary and secondary metabolism at systems level, and to predict gene manipulation targets for overproduction of important antibiotics. Here, the status of actinomycetes’ GEMs and their applications for designing antibiotics-overproducing strains are presented. Despite advances in the practice of GEM reconstruction, actinomycetes’ GEMs still remain incomplete in describing a full set of biosynthetic pathways of secondary metabolites. As to the GEM-based strategies, various simulation methods are deployed to better describe secondary metabolism by introducing changes in constraints and/or objective function as well as by using omics data. Gene manipulation targeting algorithms developed for metabolic engineering of model organisms have also been actively applied to actinomycetes for the antibiotics production. Further consideration of computational resources dedicated to secondary metabolites in addition with automated GEM reconstruction tools will further upgrade GEMs of actinomycetes for antibiotics discovery and development.

General information

State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, New Bioactive Compounds, Korea Advanced Institute of Science and Technology
Number of pages: 9
Publication date: 2019
Peer-reviewed: Yes

Publication information

Journal: Biotechnology Journal
Volume: 14
Issue number: 1
Article number: 1800377
ISSN (Print): 1860-6768
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.12
Web of Science (2017): Impact factor 3.507
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.2 SJR 1.29 SNIP 0.969
Web of Science (2016): Impact factor 3.649
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.91 SJR 1.172 SNIP 0.874
Web of Science (2015): Impact factor 3.781
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.98 SJR 1.189 SNIP 1.062
Web of Science (2014): Impact factor 3.49
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.01 SJR 1.136 SNIP 1.093
Web of Science (2013): Impact factor 3.708
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.4 SJR 0.944 SNIP 0.957
Web of Science (2012): Impact factor 3.446
ISI indexed (2012): ISI indexed no
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.94 SJR 0.785 SNIP 0.726
ISI indexed (2011): ISI indexed no
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.787 SNIP 0.798
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.695 SNIP 0.749
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.581 SNIP 0.806
Scopus rating (2007): SJR 0.568 SNIP 0.709
Web of Science (2007): Indexed yes
Original language: English
DOIs:
10.1002/biot.201800377
Source: FindIt
Source-ID: 2438515503
Research output: Research - peer-review : Review – Annual report year: 2019