Biphasic reaction systems are composed of immiscible aqueous and organic liquid phases where reactants, products, and catalysts are partitioned. These biphasic conditions point to novel synthesis paths, higher yields, and faster reactions, as well as facilitate product separation. The biphasic systems have a broad range of application, such as the manufacture of petroleum-based chemicals, pharmaceuticals, and agro-bio products. Major considerations in the design and analysis of biphasic reaction systems are physical and chemical equilibria, kinetic mechanisms, and reaction rates.

The primary contribution of this thesis is the development of a systematic modelling framework for the biphasic reaction system. The developed framework consists of three modules describing phase equilibria, reactions and mass transfer, and material balances of such processes. Correlative and predictive thermodynamic models, including newly developed group-contribution electrolyte model (e-KT-UNIFAC), have been implemented to predict the partitioning and equilibria of electrolyte and non-electrolyte species for a wide variety of reacting substances. Reaction kinetics and mass transfer are described by non-elementary reaction rate laws. Extents of reaction are used to calculate the species material balances. The resulting mathematical model contains temperature dependent reaction rate parameters, equilibrium constants, and partition coefficients; where only the reaction rates are to be regressed to a minimum of time-dependent data. The application of the framework is made to five distinct cases in order to highlight the performance of the model for correlating the data and predicting the overall rates, the ultimate amounts of product formation, the ultimate impurities amount, and the optimum operating condition using different organic solvents leading to an improved and innovative design of the system.