Generating substrate bound functional chemokine gradients in vitro

Publication: Research - peer-reviewJournal article – Annual report year: 2009

NullPointerException

View graph of relations

Microcontact printing (mCP) is employed to generate discontinuous microscale gradients of active fractalkine, a chemokine expressed by endothelial cells near sites of inflammation where it is believed to form concentration gradients descending away from the inflamed area. In vivo, fractalkine is a transmembrane molecule extending its chemokine domain into the vascular lumen. Substrate bound in vitro gradients may thus closely resemble in vivo conditions. Direct mCP of sensitive proteins like fractalkine may cause partial protein denaturation and will not ensure correct orientation of the biologically active part of the molecules. Here, indirect mCP of a capture antibody recognizing a molecular tag on the target protein is successfully used to pattern tagged fractalkine in microscale gradient patterns. Fractalkine functions as an adhesion molecule for leukocytes. Cells expressing the fractalkine receptor are found to attach to the gradient structure at a density correlated with the fractional area covered by fractalkine. This indicates that the patterned fractalkine maintains its biological function. The method can be applied to in vitro studies of cell responses to the wide range of naturally surface-bound chemokines (haptotactic gradients). The use of a capture antibody facilitates control of the orientation of tagged molecules, thereby ensuring a high degree of bio-functionality through correct presentation and reduced protein denaturation.
Original languageEnglish
JournalBiomaterials
Publication date2009
Volume30
Journal number29
Pages5305-5311
ISSN0142-9612
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 3
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 4332314