Generalized time scale for wave-induced backfilling beneath submarine pipelines - DTU Orbit (30/01/2019)

Generalized time scale for wave-induced backfilling beneath submarine pipelines

This paper presents 25 new laboratory experiments involving the wave-induced backfilling of wave-induced scour holes beneath submarine pipelines (so-called wave-to-wave backfilling scenarios). The experiments complement the previous 8 wave-to-wave backfilling experiments of Fredsøe et al., as well as recent current-to-wave backfilling experiments of Bayraktar et al. It is found that the wave-induced backfilling time scale is generally an order of magnitude larger than for scour, and is relatively insensitive to the initial (current- or wave-induced) pre-backfilling scour profile. Based on this, the data sets involving wave-induced backfilling are collectively analyzed, resulting in a new generalized expression for estimating the wave-induced backfilling time scale beneath pipelines in the live-bed regime. This expression accounts for primary dependence on the Shields parameter, as well as secondary dependence based on the difference between the (estimated or known) initial and expected final equilibrium scour depth due to the backfilling wave condition.

General information
State: Published
Organisations: Department of Mechanical Engineering, Fluid Mechanics, Coastal and Maritime Engineering, Technical University of Denmark
Contributors: Bastian, K., Carstensen, S., Sui, T., Fuhrman, D. R.
Number of pages: 10
Pages: 113-122
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Coastal engineering
Volume: 143
ISSN (Print): 0378-3839
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.28 SJR 1.767 SNIP 1.818
Web of Science (2017): Impact factor 2.674
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.44 SJR 2.133 SNIP 2.24
Web of Science (2016): Impact factor 3.221
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.9 SJR 1.877 SNIP 2.074
Web of Science (2015): Impact factor 2.841
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.55 SJR 1.804 SNIP 2.087
Web of Science (2014): Impact factor 2.428
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.58 SJR 1.654 SNIP 2.234
Web of Science (2013): Impact factor 2.062
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.21 SJR 1.931 SNIP 2.159
Web of Science (2012): Impact factor 2.239
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes