Gaussianity revisited - DTU Orbit (18/01/2019)

Gaussianity revisited: exploring the Kibble–Zurek mechanism with superconducting rings

In this paper we use spontaneous flux production in annular superconductors to shed light on the Kibble–Zurek (KZ) scenario. In particular, we examine the effects of finite size and external fields, neither of which is directly amenable to the KZ analysis. Supported by 1D and 3D simulations, the properties of a superconducting ring are seen to be well represented by analytic Gaussian approximations which encode the KZ scales indirectly. Experimental results for annuli in the presence of external fields corroborate these findings.

General information
State: Published
Organisations: Department of Physics, Helsinki Institute of Physics, University of Salerno, Russian Academy of Sciences, Imperial College London
Contributors: Weir, D. J., Monaco, R., Koshelets, V. P., Mygind, J., Rivers, R. J.
Pages: 404207
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Journal of Physics: Condensed Matter
Volume: 25
Issue number: 40
ISSN (Print): 0953-8984
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.37 SJR 0.875 SNIP 0.921
Web of Science (2017): Impact factor 2.617
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.89 SJR 1.553 SNIP 0.91
Web of Science (2016): Impact factor 2.678
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.65 SJR 1.043 SNIP 0.889
Web of Science (2015): Impact factor 2.209
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.99 SJR 1.284 SNIP 0.987
Web of Science (2014): Impact factor 2.346
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.11 SJR 1.326 SNIP 1.022
Web of Science (2013): Impact factor 2.223
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.33 SJR 1.688 SNIP 1.168
Web of Science (2012): Impact factor 2.355
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.31 SJR 1.66 SNIP 1.161
Web of Science (2011): Impact factor 2.546
ISI indexed (2011): ISI indexed yes