Functional and technological properties of camel milk proteins: a review - DTU Orbit (15/12/2018)

Functional and technological properties of camel milk proteins: a review
This review summarises current knowledge on camel milk proteins, with focus on significant peculiarities in protein composition and molecular properties. Camel milk is traditionally consumed as a fresh or naturally fermented product. Within the last couple of years, an increasing quantity is being processed in dairy plants, and a number of consumer products have been marketed. A better understanding of the technological and functional properties, as required for product improvement, has been gained in the past years. Absence of the whey protein β-LG and a low proportion of κ-casein cause differences in relation to dairy processing. In addition to the technological properties, there are also implications for human nutrition and camel milk proteins are of interest for applications in infant foods, for food preservation and in functional foods. Proposed health benefits include inhibition of the angiotensin converting enzyme, antimicrobial and antioxidant properties as well as an antidiabetogenic effect. Detailed investigations on foaming, gelation and solubility as well as technological consequences of processing should be investigated further for the improvement of camel milk utilisation in the near future.

General information
State: Published
Organisations: National Food Institute, Research Group for Gut Microbiology and Immunology, University of Copenhagen, University of Botswana, Haramaya University, M+W Central Europe GmbH
Number of pages: 8
Pages: 422-429
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Journal of Dairy Research
Volume: 83
Issue number: 4
ISSN (Print): 0022-0299
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.33 SJR 0.573 SNIP 0.759
Web of Science (2017): Impact factor 1.17
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.66 SJR 0.648 SNIP 0.883
Web of Science (2016): Impact factor 1.409
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.54 SJR 0.694 SNIP 0.888
Web of Science (2015): Impact factor 1.5
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.79 SJR 0.732 SNIP 0.954
Web of Science (2014): Impact factor 1.598
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.49 SJR 0.625 SNIP 0.828
Web of Science (2013): Impact factor 1.394
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.54 SJR 0.67 SNIP 0.937
Web of Science (2012): Impact factor 1.373
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1