This paper investigates the simultaneous optimization problem of routing and sailing speed in the context of full-shipload tramp shipping. In this problem, a set of cargoes can be transported from their load to discharge ports by a fleet of heterogeneous ships of different speed ranges and load-dependent fuel consumption. The objective is to determine which orders to serve and to find the optimal route for each ship and the optimal sailing speed on each leg of the route so that the total profit is maximized. The problem originated from a real-life challenge faced by a Danish tramp shipping company in the tanker business. To solve the problem, a three-index mixed integer linear programming formulation as well as a set packing formulation is presented. A novel Branch-and-Price algorithm with efficient data preprocessing and heuristic column generation is proposed. The computational results on the test instances generated from real-life data show that the heuristic provides optimal solutions for small test instances and near-optimal solutions for larger test instances in a short running time. The effects of speed optimization and the sensitivity of the solutions to the fuel price change are analyzed. It is shown that speed optimization can improve the total profit by 16% on average and the fuel price has a significant effect on the average sailing speed and total profit.
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.05 SJR 2.41 SNIP 2.449
Web of Science (2011): Impact factor 1.72
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.316 SNIP 2.449
Web of Science (2010): Impact factor 1.769
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2.28 SNIP 2.389
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 2.199 SNIP 2.287
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.976 SNIP 2.523
Web of Science (2007): Indexed yes
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.157 SNIP 2.009
Scopus rating (2004): SJR 1.003 SNIP 1.706
Scopus rating (2003): SJR 1.058 SNIP 1.677
Scopus rating (2002): SJR 0.85 SNIP 1.441
Scopus rating (2001): SJR 1.069 SNIP 1.095
Scopus rating (2000): SJR 0.931 SNIP 0.878
Scopus rating (1999): SJR 0.862 SNIP 0.879
Original language: English
Keywords: Heuristic column generation, Speed optimization, Tramp shipping
Electronic versions:
Full_Shipload_Tramp.pdf. Embargo ended: 22/10/2018
DOIs:
10.1016/j.cor.2015.10.002
Source: FindIt
Source-ID: 2287622756
Research output: Research - peer-review › Journal article – Annual report year: 2016