Full-Scale Spectrum of Boundary-Layer Winds

Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr^{-1} to 10 Hz. 10-min cup anemometer data are used to estimate the spectrum from about 1 yr^{-1} to 0.05 min^{-1}; in addition, using 20-Hz sonic anemometer data, an ensemble of 1-day spectra covering the range 1 day^{-1} to 10 Hz has been calculated. The overlapping region in these two measured spectra is in good agreement. Classical topics regarding the various spectral ranges, including the spectral gap, are revisited. Following the seasonal peak at 1 yr^{-1}, the frequency spectrum $S(f)$ increases with $f + 1$ and gradually reaches a peak at about 0.2 day^{-1}. From this peak to about 1 hr^{-1}, the spectrum $S(f)$ decreases with frequency with a -2 slope, followed by a $-2/3$ slope, which can be described by $S(f) = a_1 f^{-2/3} + a_2 f^{-2}$. Ending in the frequency range for which the debate on the spectral gap is ongoing. It is shown here that the spectral gap exists and can be modelled. The linear composition of the horizontal wind variation from the mesoscale and microscale gives the observed spectrum in the gap range, leading to a suggestion that mesoscale and microscale processes are uncorrelated. Depending on the relative strength of the two processes, the gap may be deep or shallow, visible or invisible. Generally, the depth of the gap decreases with height. In the low frequency region of the gap, the mesoscale spectrum shows a two-dimensional isotropic nature; in the high frequency region, the classical three-dimensional boundary-layer turbulence is evident. We also provide the cospectrum of the horizontal and vertical components, and the power spectra of the three velocity components over a wide range from 1 day^{-1} to 10 Hz, which is useful in determining the necessary sample duration when measuring turbulence statistics in the boundary layer.
Scopus rating (2012): CiteScore 2.12 SJR 1.923 SNIP 1.628
Web of Science (2012): Impact factor 2.291
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.9 SJR 1.378 SNIP 1.345
Web of Science (2011): Impact factor 1.737
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.625 SNIP 1.243
Web of Science (2010): Impact factor 1.879
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.953 SNIP 1.356
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.876 SNIP 1.629
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.571 SNIP 1.487
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.765 SNIP 1.368
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.164 SNIP 1.287
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.265 SNIP 1.801
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.86 SNIP 1.396
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.323 SNIP 1.178
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.685 SNIP 1.15
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.509 SNIP 1.075
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.496 SNIP 0.898
Original language: English
Electronic versions:
FullScaleWindSpectrum20151222.pdf. Embargo ended: 02/02/2017
DOIs:
10.1007/s10546-016-0129-x
Source: PublicationPreSubmission
Source-ID: 120323995
Research output: Research - peer-review › Journal article – Annual report year: 2016