Full protection in mink against mink enteritis virus with new generation canine parvovirus vaccines based on synthetic peptide or recombinant protein - DTU Orbit (07/12/2018)

Full protection in mink against mink enteritis virus with new generation canine parvovirus vaccines based on synthetic peptide or recombinant protein

Two recently developed vaccines—one based on synthetic peptide and one based on recombinant capsid protein—fully protected dogs against heavy experimental canine parvovirus (CPV) infection. The high sequence homology (>98%) and antigenic similarity between CPV and mink enteritis virus (MEV), feline panleukopenia virus, and raccoon parvovirus, suggest that both vaccines could protect mink, cats and raccoons against these respective host range variants. This was tested in mink and turned out to be the case. The two vaccines were fully protective and as effective as a conventional commercial vaccine based on inactivated virus. Surprisingly, this protection was obtained after only a single injection. Furthermore, the vaccinal dose of 150 μg of conjugated peptide or 3 μg of recombinant VP2 particles per animal, are sufficiently low to be cost-effective and applicable on a large scale.

General information
State: Published
Organisations: National Veterinary Institute, Sektion for Eksotiske Virussygdomme, Division of Virology
Pages: 1033-1037
Publication date: 1995
Peer-reviewed: No

Publication information
Journal: Vaccine
Volume: 13
Issue number: 11
ISSN (Print): 0264-410X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.19 SJR 1.863 SNIP 1.124
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.33 SJR 1.985 SNIP 1.142
Web of Science (2016): Impact factor 3.235
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.45 SJR 2.073 SNIP 1.248
Web of Science (2015): Impact factor 3.413
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.57 SJR 2.105 SNIP 1.218
Web of Science (2014): Impact factor 3.624
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.43 SJR 1.752 SNIP 1.115
Web of Science (2013): Impact factor 3.485
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.56 SJR 1.656 SNIP 1.154
Web of Science (2012): Impact factor 3.492
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.86 SJR 1.744 SNIP 1.269
Web of Science (2011): Impact factor 3.766
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.663 SNIP 1.21
Web of Science (2010): Impact factor 3.572
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.453 SNIP 1.21
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.355 SNIP 1.027
Scopus rating (2007): SJR 1.299 SNIP 1.114
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.328 SNIP 1.167
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.219 SNIP 1.068
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.17 SNIP 1.172
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.153 SNIP 1.125
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.277 SNIP 0.997
Scopus rating (2001): SJR 1.012 SNIP 1.03
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.739 SNIP 1.011
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1 SNIP 1.244
Original language: English

DOI: 10.1016/0264-410X(95)00021-R
Source: orbit
Source-ID: 240922
Research output: Research › Journal article – Annual report year: 1995