Fuel pellets from biomass: The importance of the pelletizing pressure and its dependency on the processing conditions

Publication: Research - peer-reviewJournal article – Annual report year: 2011

Documents

DOI

View graph of relations

The aim of the present study was to identify the key factors affecting the pelletizing pressure in biomass pelletization processes. The impact of raw material type, pellet length, temperature, moisture content and particle size on the pressure build up in the press channel of a pellet mill was studied using a single pellet press unit. It was shown that the pelletizing pressure increased exponentially with the pellet length. The rate of increase was dependent on biomass species, temperature, moisture content and particle size. A mathematical model, predicting the pelletizing pressure, was in good accordance with experimental data. It was shown that increasing the temperature resulted in a decrease of the pelletizing pressure. Infrared spectra taken from the pellets surface, indicated hydrophobic extractives on the pellet surface, for pellets produced at higher temperatures. The extractives act as lubricants, lowering the friction between the biomass and the press channel walls. The effect of moisture content on the pelletizing pressure was dependent on the raw material species. Different particle size fractions, from below 0.5 mm up to 2.8 mm diameter, were tested, and it was shown that the pelletizing pressure increased with decreasing particle size. The impact of pelletizing pressure on pellet density was determined, and it was shown that a pelletizing pressure above 200 MPa resulted only in minor increase in pellet density. 2011 Published by Elsevier Ltd.
Original languageEnglish
JournalFuel
Publication date2011
Volume90
Issue11
Pages3285-3290
ISSN0016-2361
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 7

Keywords

  • Thermal gasification of biomass
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 6337842