The purpose of this study was to anchor basalt-reinforced polymers in an aluminum grip using dry friction. Dry friction clamping is considered the optimal solution for post-mounting of load-bearing terminations on composite structures. A new test method is presented for characterizing the frictional load transfer behavior of the grip. To carry out the study, a custom-built test rig was used to examine the relation between pullout force and clamping force. The anchoring method was found to be successful. The paper presents details on the custom-built test rig, along with the use of digital image correlation for displacement monitoring. Pullout results and validation tests are presented. In the discussion, the results and the importance of the grips surface finish with regard to pullout force are discussed. The discussion was backed by investigations on wear patterns using SEM.

General information
State: Published
Organisations: Department of Mechanical Engineering, Manufacturing Engineering, Solid Mechanics, Technical University of Denmark
Contributors: Costache, A., Glejbøl, K., Sivebæk, I. M., Berggreen, C.
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Tribology Letters
Volume: 59
Issue number: 2
Article number: 30
ISSN (Print): 1023-8883
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.33 SJR 1.204 SNIP 1.236
Web of Science (2017): Impact factor 2.182
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.04 SJR 1.04 SNIP 1.289
Web of Science (2016): Impact factor 1.891
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.96 SJR 1.013 SNIP 1.197
Web of Science (2015): Impact factor 1.758
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.21 SJR 1.291 SNIP 1.599
Web of Science (2014): Impact factor 1.739
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.53 SJR 1.39 SNIP 1.687
Web of Science (2013): Impact factor 2.151
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.95 SJR 1.339 SNIP 1.548
Web of Science (2012): Impact factor 1.743
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.74 SJR 1.183 SNIP 1.562
Web of Science (2011): Impact factor 1.582
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes