Frequency-swept Light Sources for Optical Coherence Tomography in the 1060nm range

Publication: ResearchPh.D. thesis – Annual report year: 2012

Standard

Frequency-swept Light Sources for Optical Coherence Tomography in the 1060nm range. / Marschall, Sebastian; Andersen, Peter E. (Main supervisor); Pedersen, Christian (Supervisor).

Kgs. Lyngby : Technical University of Denmark, 2012. 97 p.

Publication: ResearchPh.D. thesis – Annual report year: 2012

Harvard

APA

CBE

MLA

Vancouver

Author

Marschall, Sebastian; Andersen, Peter E. (Main supervisor); Pedersen, Christian (Supervisor) / Frequency-swept Light Sources for Optical Coherence Tomography in the 1060nm range.

Kgs. Lyngby : Technical University of Denmark, 2012. 97 p.

Publication: ResearchPh.D. thesis – Annual report year: 2012

Bibtex

@phdthesis{b982134c88354bffbed24c066a061ec4,
title = "Frequency-swept Light Sources for Optical Coherence Tomography in the 1060nm range",
publisher = "Technical University of Denmark",
author = "Sebastian Marschall and Andersen, {Peter E.} and Christian Pedersen",
year = "2012",

}

RIS

TY - BOOK

T1 - Frequency-swept Light Sources for Optical Coherence Tomography in the 1060nm range

A1 - Marschall,Sebastian

AU - Marschall,Sebastian

A2 - Andersen,Peter E.

A2 - Pedersen,Christian

ED - Andersen,Peter E.

ED - Pedersen,Christian

PB - Technical University of Denmark

PY - 2012/6/28

Y1 - 2012/6/28

N2 - Optical coherence tomography (OCT) is a non-invasive imaging technique for visualizing the internal structure of scattering materials, such as biological tissues. It generates two- or three-dimensional images of the sample with cellular (micrometer) resolution. OCT has become an important instrument in the biomedical eld, especially in ophthalmology, where it is used for diagnosing retinal diseases. Using light at 1060nm permits deep penetration into the retina and into the layers beneath, the choroid and the sclera. This wavelength range is also benecial for imaging in eyes affected by cataract. For the 1060nm band, rapidly tunable lasers|so-called swept sources|are available which enable ultra-high speed acquisition of large three-dimensional datasets. However, these light sources require further improvements: higher output power for sufficient signal quality and wider tuning bandwidth for better depth resolution in combination with high tuning speed.<br/>We investigate the performance of novel semiconductor laser gain media in fiber-based high-speed swept source prototypes. We demonstrate high output power using a tapered amplifier, and we achieve improved depth resolution with a broadband amplifier and optimization of the light source spectrum. Both technologies are feasible for developing novel high performance swept sources, as we demonstrate by applying the prototypes in OCT imaging. Furthermore, we study numerically how absorption by water in the human eye impairs the performance of retinal imaging. Our simulation reveals a general relationship between the light source bandwidth and the optimal center wavelength, which is supported by our experimental results. This relationship constitutes an important design criterion for future development of high-speed broadband swept sources.

AB - Optical coherence tomography (OCT) is a non-invasive imaging technique for visualizing the internal structure of scattering materials, such as biological tissues. It generates two- or three-dimensional images of the sample with cellular (micrometer) resolution. OCT has become an important instrument in the biomedical eld, especially in ophthalmology, where it is used for diagnosing retinal diseases. Using light at 1060nm permits deep penetration into the retina and into the layers beneath, the choroid and the sclera. This wavelength range is also benecial for imaging in eyes affected by cataract. For the 1060nm band, rapidly tunable lasers|so-called swept sources|are available which enable ultra-high speed acquisition of large three-dimensional datasets. However, these light sources require further improvements: higher output power for sufficient signal quality and wider tuning bandwidth for better depth resolution in combination with high tuning speed.<br/>We investigate the performance of novel semiconductor laser gain media in fiber-based high-speed swept source prototypes. We demonstrate high output power using a tapered amplifier, and we achieve improved depth resolution with a broadband amplifier and optimization of the light source spectrum. Both technologies are feasible for developing novel high performance swept sources, as we demonstrate by applying the prototypes in OCT imaging. Furthermore, we study numerically how absorption by water in the human eye impairs the performance of retinal imaging. Our simulation reveals a general relationship between the light source bandwidth and the optimal center wavelength, which is supported by our experimental results. This relationship constitutes an important design criterion for future development of high-speed broadband swept sources.

BT - Frequency-swept Light Sources for Optical Coherence Tomography in the 1060nm range

ER -