Frequency detuning effects for a parametric amplifier

Frequency detuning effects for a parametric amplifier
Frequency tuned parametric amplifiers may experience changes in both the two-to-one frequency ratio between the parametric and the direct excitation, and between the direct excitation frequency and the system's natural frequency. These effects are investigated theoretically using a Duffing-Mathieu equation as the model system, and investigated experimentally using a macro cantilever beam as the model object. The approximate analytical steady-state vibration amplitudes are derived using the method of varying amplitudes, and compared with results of direct numerical integration, showing good agreement. Theoretical predictions reveal that for detuned superthreshold parametric amplification some of the amplitude-frequency curves appear to collapse. Experiments show that a drop in the maximum steady-state vibration amplitude occurs for specific areas in the amplitude-excitation detuning domain, whereas for other areas frequency detuning may yield an increased maximum steady-state vibration amplitude. Thus frequency detuning is a feature which can purposefully be avoided or utilized, dependent on the usage e.g. for sensors or energy harvesters. We report experimentally obtained bistable amplified steady-state responses, which also support theoretical findings.

General information
State: Accepted/In press
Organisations: Solid Mechanics, Department of Mechanical Engineering, Eindhoven University of Technology
Contributors: Neumeyer, S., Sorokin, V., van Gastel, M. H. M., Thomsen, J. J.
Pages: 77-87
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Journal of Sound and Vibration
Volume: 445
ISSN (Print): 0022-460X
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.2 SJR 1.36 SNIP 2.037
Web of Science (2017): Impact factor 2.618
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.09 SJR 1.459 SNIP 2.236
Web of Science (2016): Impact factor 2.593
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.71 SJR 1.31 SNIP 2.15
Web of Science (2015): Impact factor 2.107
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.54 SJR 1.41 SNIP 2.308
Web of Science (2014): Impact factor 1.813
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.61 SJR 1.32 SNIP 2.553
Web of Science (2013): Impact factor 1.857
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.3 SJR 1.441 SNIP 2.939
Web of Science (2012): Impact factor 1.613
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.05 SJR 1.383 SNIP 2.661
Web of Science (2011): Impact factor 1.588
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.175 SNIP 2.039
Web of Science (2010): Impact factor 1.334
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.34 SNIP 2.147
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.165 SNIP 1.911
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.144 SNIP 1.687
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.888 SNIP 1.628
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.014 SNIP 1.559
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.91 SNIP 1.476
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.216 SNIP 1.392
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.233 SNIP 1.27
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.825 SNIP 1.339
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.974 SNIP 1.206
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.953 SNIP 1.123
Original language: English
Keywords: Parametric amplification, Frequency detuning, Nonlinearity
DOIs:
10.1016/j.jsv.2018.12.036
Source: FindIt
Source-ID: 2442889484
Research output: Research - peer-review > Journal article – Annual report year: 2019