Fractional and complex pseudo-splines and the construction of Parseval frames - DTU Orbit (11/12/2018)

Fractional and complex pseudo-splines and the construction of Parseval frames

Pseudo-splines of integer order \((m, ℓ)\) were introduced by Daubechies, Han, Ron, and Shen as a family which allows interpolation between the classical B-splines and the Daubechies’ scaling functions. The purpose of this paper is to generalize the pseudo-splines to fractional and complex orders \((z, ℓ)\) with \(α = \text{Re} \ z ≥ 1\). This allows increased flexibility in regard to smoothness: instead of working with a discrete family of functions from \(C^m, m\in\mathbb{N}_0\), one uses a continuous family of functions belonging to the Hölder spaces \(C^{α−1}\). The presence of the imaginary part of \(z\) allows for direct utilization in complex transform techniques for signal and image analyses. We also show that in analogue to the integer case, the generalized pseudo-splines lead to constructions of Parseval wavelet frames via the unitary extension principle. The regularity and approximation order of this new class of generalized splines is also discussed.

General information

State: Published
Organisations: Department of Applied Mathematics and Computer Science, Mathematics, Universität Passau
Contributors: Massopust, P., Forster, B., Christensen, O.
Pages: 12-24
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Applied Mathematics and Computation
Volume: 314
ISSN (Print): 0096-3003
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.32 SJR 1.065 SNIP 1.441
Web of Science (2017): Impact factor 2.3
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.88 SJR 0.944 SNIP 1.213
Web of Science (2016): Impact factor 1.738
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.7 SJR 0.95 SNIP 1.25
Web of Science (2015): Impact factor 1.345
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.86 SJR 0.961 SNIP 1.474
Web of Science (2014): Impact factor 1.551
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.92 SJR 1.137 SNIP 1.46
Web of Science (2013): Impact factor 1.6
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.77 SJR 1.02 SNIP 1.308
Web of Science (2012): Impact factor 1.349
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.78 SJR 1.05 SNIP 1.315
Web of Science (2011): Impact factor 1.317
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.842 SNIP 1.255
Web of Science (2010): Impact factor 1.536
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.751 SNIP 1.061
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.778 SNIP 0.985
Scopus rating (2007): SJR 0.869 SNIP 1.113