Four-dimensional optical manipulation of colloidal particles

Publication: Research - peer-reviewBook chapter – Annual report year: 2010

View graph of relations

The technical development of optical tweezers, along with their application in the biological and physical sciences, has progressed significantly since the demonstration of an optical trap for micron-sized particles based on a single, tightly focused laser beam was first reported more than twenty years ago. Bringing together many landmark papers on the field, Optical Tweezers: Methods and Applications covers the techniques and uses of optical tweezers. Each section is introduced by a brief commentary, setting the papers into their historical and contemporary contexts. The first two sections explore the pioneering work of Arthur Ashkin and the use of optical tweezers in biological systems. The book then discusses the extensive use of optical tweezers for the measurement of picoNewton forces and examines various approaches for modeling forces within optical tweezers. The next parts explain how optical tweezers are used in colloid science, how to convert optical tweezers into optical spanners, and how spatial light modulators create holographic tweezers. The book concludes with a section on emerging applications of optical tweezers in microfluidic systems. With contributions from some of the best in the field, this compendium presents important historical and current developments of optical tweezers in a range of scientific areas, from the manipulation of bacteria to the treatment of DNA.
Original languageEnglish
TitleOptical Tweezers : Methods and Applications
Number of pages508
PublisherC R C Press LLC
Publication date2010
Edition1
ISBN (print)978-1-4200-7412-3
StatePublished
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 4548652