Forward modeling of collective Thomson scattering for Wendelstein 7-X plasmas - DTU Orbit (13/05/2019)

Forward modeling of collective Thomson scattering for Wendelstein 7-X plasmas: Electrostatic approximation

In this paper, we present a method for numerical computation of collective Thomson scattering (CTS). We developed a forward model, eCTS, in the electrostatic approximation and benchmarked it against a full electromagnetic model. Differences between the electrostatic and the electromagnetic models are discussed. The sensitivity of the results to the ion temperature and the plasma composition is demonstrated. We integrated the model into the Bayesian data analysis framework Minerva and used it for the analysis of noisy synthetic data sets produced by a full electromagnetic model. It is shown that eCTS can be used for the inference of the bulk ion temperature. The model has been used to infer the bulk ion temperature from the first CTS measurements on Wendelstein 7-X.

General information
Publication status: Published
Organisations: Department of Physics, Plasma Physics and Fusion Energy, Eindhoven University of Technology, Max-Planck-Institut für Plasmaforschung, University of Stuttgart
Corresponding author: Abramovic, I.
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Review of Scientific Instruments
Volume: 90
Issue number: 2
Article number: 023501
ISSN (Print): 0034-6748
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
Original language: English
DOIs: 10.1063/1.5048361
Source: Scopus
Source-ID: 85061342826
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review