NullPointerException

View graph of relations

The effect of pressure on the formation of quasicrystals and the amorphous-to-quasicrystalline phase transformation kinetics in the supercooled liquid region for a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass have been investigated by in situ high-pressure and high-temperature nonisothermal and isothermal x-ray powder diffraction measurements using synchrotron radiation, respectively. It is found that with increasing pressure, the onset temperature for the formation of quasicrystals increases with a slope of 9.4 K/GPa while the temperature interval of the stability and the average grain size of quasicrystals decrease, Atomic mobility is important for the formation of quasicrystals from the metallic glass whereas the relationship of the crystallization temperature vs pressure for the transition from the quasicrystalline state to intermetallic compounds may mainly depend on the thermodynamic potential energy barrier. To study the amorphous-to-quasicrystalline phase transformation kinetics in the metallic glass, relative volume fractions of the transferred quasicrystalline phase as a function of annealing time, obtained at 663, 673, 683, and 693 K, have been analyzed in details using 14 nucleation and growth models together with the Johnson-Mehl-Avrami model. The Avrami exponent was found to be near I at all four temperatures, also indicating that atomic diffusion might involve in the amorphous-to-quasicrystalline phase transformation for the Zr65Cu7.5Al7.5Ni10Ag10 metallic glass. It is found that the time-dependent transient nucleation is essential for the transformation and different nucleation and growth models have been critically assessed.
Original languageEnglish
JournalPhysical Review B Condensed Matter
Publication date2001
Volume64
Journal number9
Pages094208
ISSN0163-1829
DOIs
StatePublished

Bibliographical note

Copyright (2001) American Physical Society

CitationsWeb of Science® Times Cited: 36

Keywords

  • U-SI ALLOYS, INSITU X-RAY, ICOSAHEDRAL PHASE, HIGH-STRENGTH, GOOD DUCTILITY, QUASI-CRYSTALLINE PHASE, M = AG, BULK GLASS, NI-AL ALLOYS, SUPERCOOLED LIQUID REGION
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 4865605