Formal Safety Assessment: an updated review

The method of Formal Safety Assessment (FSA) was devised several years ago with the intent to help the International Maritime Organization (IMO) and other policy makers formulate policies and regulations by the proper use of the scientific method in matters pertaining to maritime safety and the protection of the marine environment. A host of FSA studies have been submitted over the last several years and have been reviewed by the IMO. Also, progress has been recently accomplished as regards incorporating environmental risk evaluation criteria within FSA. On the basis of these developments, revisions of the FSA guidelines have been proposed and adopted. This paper presents a review of the FSA method in light of these developments. This review updates an earlier review of FSA by Kontovas and Psaraftis [Marine Technol 46(1):45–59, (2009)]. It also takes this opportunity to identify some deficiencies of FSA, either due to an incorrect application of the method or to the method itself, and makes some suggestions for further action in this area.

General information
State: Published
Organisations: National Technical University of Athens
Contributors: Psaraftis, H. N.
Pages: 390-402
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Journal of Marine Science and Technology
Volume: 17
Issue number: 3
ISSN (Print): 0948-4280
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.57 SJR 0.784 SNIP 1.302
Web of Science (2017): Impact factor 1.119
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.45 SJR 1.081 SNIP 1.675
Web of Science (2016): Impact factor 0.838
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.28 SJR 1.14 SNIP 1.862
Web of Science (2015): Impact factor 0.709
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.16 SJR 1.055 SNIP 1.693
Web of Science (2014): Impact factor 0.805
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.13 SJR 0.556 SNIP 2.007
Web of Science (2013): Impact factor 0.718
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.01 SJR 0.582 SNIP 1.335
Web of Science (2012): Impact factor 0.845
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.03 SJR 0.578 SNIP 1.382
Web of Science (2011): Impact factor 0.547
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.733 SNIP 1.379
Web of Science (2010): Impact factor 0.519
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.832 SNIP 1.75
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.44 SNIP 0.724
Scopus rating (2007): SJR 0.947 SNIP 1.635
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.624 SNIP 1.145
Scopus rating (2005): SJR 0.45 SNIP 1.799
Scopus rating (2004): SJR 0.952 SNIP 1.194
Scopus rating (2003): SJR 0.493 SNIP 1.275
Scopus rating (2002): SJR 0.305 SNIP 1.089
Scopus rating (2001): SJR 0.443 SNIP 0.914
Scopus rating (2000): SJR 0.157 SNIP 1.337
Scopus rating (1999): SJR 0.13 SNIP 0.459

Original language: English
Keywords: Formal safety assessment, International maritime organization, Safety, Environmental protection
DOIs:
10.1007/s00773-012-0175-0
Source: dtu
Source-ID: n::oai:DTIC-ART:springer/372486575::36141
Research output: Research - peer-review > Journal article – Annual report year: 2012