Forces acting on a small particle in an acoustical field in a viscous fluid

Publication: Research - peer-reviewJournal article – Annual report year: 2012

View graph of relations

We calculate the acoustic radiation force from an ultrasound wave on a compressible, spherical particle suspended in a viscous fluid. Using Prandtl-Schlichting boundary-layer theory, we include the kinematic viscosity of the solvent and derive an analytical expression for the resulting radiation force, which is valid for any particle radius and boundary-layer thickness provided that both of these length scales are much smaller than the wavelength of the ultrasound wave (millimeters in water at megahertz frequencies). The acoustophoretic response of suspended microparticles is predicted and analyzed using parameter values typically employed in microchannel acoustophoresis.
Original languageEnglish
JournalPhysical Review E (Statistical, Nonlinear, and Soft Matter Physics)
Publication date2012
Volume85
Journal number1
Pages016327
ISSN15393755
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 20
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 6676550