Foam control is an imperative need in biogas plants, as foaming is a major operational problem. In the present study, the effect of oils (rapeseed oil, oleic acid, and octanoic acid) and tributylphosphate on foam reduction and process performance in batch and continuous manure-based biogas reactors was investigated. The compounds were tested in dosages of 0.05%, 0.1% and 0.5% v/v feed. The results showed that rapeseed oil was most efficient to suppress foam at the dosage of 0.05% and 0.1% v/v feed, while octanoic acid was most efficient to suppress foam at dosage of 0.5% v/v feed. Moreover, the addition of rapeseed oil also increased methane yield. In contrast, tributylphosphate, which was very efficient antifoam, was found to be inhibitory to the biogas process. © 2013 Elsevier Ltd.

General information
- State: Published
- Organisations: Department of Environmental Engineering, Residual Resource Engineering
- Contributors: Kougias, P., Boe, K., Tsapekos, P., Angelidaki, I.
- Pages: 198-205
- Publication date: 2014
- Peer-reviewed: Yes

Publication Information
- Journal: Bioresource Technology
- Volume: 153
- Issue number: 4
- ISSN (Print): 0960-8524
- Ratings:
 - BFI (2018): BFI-level 2
 - Web of Science (2018): Indexed yes
 - BFI (2017): BFI-level 2
 - Scopus rating (2017): CiteScore 6.28 SJR 2.029 SNIP 1.799
 - Web of Science (2017): Impact factor 5.807
 - Web of Science (2017): Indexed yes
 - BFI (2016): BFI-level 2
 - Scopus rating (2016): CiteScore 5.94 SJR 2.215 SNIP 1.932
 - Web of Science (2016): Impact factor 5.651
 - Web of Science (2016): Indexed yes
 - BFI (2015): BFI-level 2
 - Scopus rating (2015): CiteScore 5.47 SJR 2.243 SNIP 1.897
 - Web of Science (2015): Impact factor 4.917
 - Web of Science (2015): Indexed yes
 - BFI (2014): BFI-level 2
 - Scopus rating (2014): CiteScore 5.3 SJR 2.399 SNIP 2.087
 - Web of Science (2014): Impact factor 4.494
 - Web of Science (2014): Indexed yes
 - BFI (2013): BFI-level 2
 - Scopus rating (2013): CiteScore 5.97 SJR 2.405 SNIP 2.477
 - Web of Science (2013): Impact factor 5.039
 - ISI indexed (2013): ISI indexed yes
 - Web of Science (2013): Indexed yes
 - BFI (2012): BFI-level 2
 - Scopus rating (2012): CiteScore 5.25 SJR 2.334 SNIP 2.461
 - Web of Science (2012): Impact factor 4.75
 - ISI indexed (2012): ISI indexed yes
 - Web of Science (2012): Indexed yes
 - BFI (2011): BFI-level 2
 - Scopus rating (2011): CiteScore 5.56 SJR 2.308 SNIP 2.507
 - Web of Science (2011): Impact factor 4.98
 - ISI indexed (2011): ISI indexed yes