Fluorinated alkyl substances and technical mixtures used in food paper-packaging exhibit endocrine-related activity in vitro - DTU Orbit (30/04/2019)

Migration of chemicals from packaging materials to foods may lead to human exposure. Polyfluoroalkyl substances (PFAS) can be used in technical mixtures (TMs) for use in food packaging of paper and board, and PFAS have been detected in human serum and umbilical cord blood. The specific structures of the PFAS in TMs are often unknown, but polyfluorinated alkyl phosphate esters (PAPs) have been characterized in TMs, food packaging, and in food. PAPs can be metabolized into fluorotelomer alcohols (FTOHs) and perfluoroalkyl carboxylic acids (PFCAs). Some PFAS have endocrine activities, highlighting the need to investigate these effects. Herein, we studied the endocrine activity of less characterized PFAS, including short-chain PFCAs and FTOHs. PAPs, and TMs of unknown chemical composition. Long-chain PFCAs were also included. We applied seven assays covering effects on estrogen, glucocorticoid, androgen, and peroxisome proliferator-activated receptor (PPAR) activity, as well as steroidogenesis in vitro and ex vivo. In general, PAPs, FTOHs, TMs, and long-chain PFCAs showed estrogenic activity through receptor activation and/or increasing 17β-estradiol levels. Furthermore, short- and long-chain PFCAs activated PPARα and PPARγ. Collectively, this means that (i) PAPs, FTOHs, and PFCAs exhibit endocrine activity through distinct and sometimes different mechanisms, (ii) two out of three tested TMs exhibited estrogenic activity, and (iii) short-chain FTOHs showed estrogenic activity and short-chain PFCAs generally activate both PPARα and PPARγ with similar potency and efficacy as long-chain PFCAs. In conclusion, several new and divergent toxicological targets were identified for different groups of PFAS.

General information
Publication status: Published
Organisations: National Food Institute, Research Group for Molecular Toxicology, Research group for Analytical Food Chemistry, Copenhagen Center for Health Technology, Université de Rennes, BioDetection Systems b.v.
Number of pages: 11
Pages: 662-672
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Andrology
Volume: 4
Issue number: 4
ISSN (Print): 2047-2919
Ratings:
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.53 SJR 0.969 SNIP 1.072
Web of Science (2016): Impact factor 2.427
Web of Science (2016): Indexed yes
Original language: English
Electronic versions:
Rosenmai_et_al_2016_Andrology.pdf
DOIs:
10.1111/andr.12190
Source: PublicationPreSubmission
Source-ID: 123692959
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review