Fluid-like elasticity induced by anisotropic effective mass density

We present a three-dimensional anisotropic elastic metamaterial, which can generate dipolar resonances. Repeating these subwavelength units can lead to one-dimensional arrays, which are essentially elastic rods that can withstand both longitudinal, and flexural vibrations. Band structure analysis shows the systems can have distinctive responses to waves with each polarization. In particular, we demonstrate that only longitudinal wave can propagate within a finite frequency regime, whereas transverse (flexural) waves meet a bandgap — a property conventionally found only in fluids. Effective medium calculation reveals that the indefinite effective mass density (positive along one spatial direction, but negative along another) is responsible to this exotic behavior. Experiments show good agreement with theoretical predictions and simulations. Our findings can see applications in many scenarios such as civil engineering and seismic wave control.

General information
State: Published
Organisations: Department of Photonics Engineering, Structured Electromagnetic Materials, Hong Kong University of Science and Technology, Soochow University
Contributors: Ma, G., Fu, C., Wang, G., del Hougne, P., Christensen, J., Lai, Y., Sheng, P.
Number of pages: 1
Publication date: 2016
Peer-reviewed: Yes
Event: Abstract from Progress In Electromagnetics Research Symposium 2016, Shanghai, China.
Keywords: wave propagation, bending, effective mass, elasticity, energy gap, metamaterials, rods (structures), vibrations, seismic wave control, fluid-like elasticity, anisotropic effective mass density, three-dimensional anisotropic elastic metamaterial, dipolar resonances, elastic rods, flexural vibrations, longitudinal vibrations, band structure analysis, finite frequency regime, transverse flexural waves, bandgap, effective medium calculation, exotic property, civil engineering control, Electromagnetics, Elasticity, Photonics, Metamaterials, Vibrations, Photonic band gap, Elasticity and anelasticity, Deformation, plasticity and creep, Elasticity, elastic constants, Deformation and plasticity, Electronic structure: density of states and band structure (condensed matter), Effective mass and g-factors (condensed matter electronic structure)
Electronic versions:
07734254.pdf
DOI:
10.1109/PIERS.2016.7734254
Source: FindIt
Source-ID: 2348970054
Research output: Research - peer-review › Conference abstract for conference – Annual report year: 2016