Finite element analysis of coupled nonlinear heat and moisture transfer in wood - DTU Orbit (06/12/2018)

Finite element analysis of coupled nonlinear heat and moisture transfer in wood

A nonlinear model for analysing heat and moisture flow in wood during drying below the fiber saturation point is presented. The model used considers wood at a macro level without taking the various moisture transports mechanisms at the microscopic level into account. Based on the finite-element method, a coupled system of equations resulting from the adopted heat and moisture transfer equations is established and an iterative scheme is proposed. The numerical procedure is verified by a test example. In a two-dimensional analysis, the influence of the coupling on the combined heat and moisture transfer is studied for a board subjected to a typical kiln-drying condition. How well the results agree with those obtained by introducing a commonly applied simplification is discussed.

General information
State: Published
Organisations: Växjö University, Chalmers University of Technology
Contributors: Eriksson, J., Ormarsson, S., Petersson, H.
Pages: 851-864
Publication date: 2006
Peer-reviewed: Yes

Publication information
Journal: Numerical Heat Transfer
Volume: 50
Issue number: 9
ISSN (Print): 1040-7782
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.7 SJR 1.168 SNIP 1.22
Web of Science (2017): Impact factor 2.409
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.3 SJR 1.11 SNIP 1.293
Web of Science (2016): Impact factor 2.259
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 1.9 SJR 1.374 SNIP 1.059
Web of Science (2015): Impact factor 1.937
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.06 SJR 1.087 SNIP 1.381
Web of Science (2014): Impact factor 1.975
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.34 SJR 0.795 SNIP 1.267
Web of Science (2013): Impact factor 1.847
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.92 SJR 1.614 SNIP 1.372
Web of Science (2012): Impact factor 1.803
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.61 SJR 1.476 SNIP 1.063
Web of Science (2011): Impact factor 2.492
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.41 SNIP 0.989
Web of Science (2010): Impact factor 1.183
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.311 SNIP 1.05
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.528 SNIP 1.205
Scopus rating (2007): SJR 2.195 SNIP 1.531
Scopus rating (2006): SJR 1.44 SNIP 1.279
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.472 SNIP 1.279
Scopus rating (2004): SJR 0.675 SNIP 1.045
Scopus rating (2003): SJR 1.154 SNIP 1.233
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.736 SNIP 0.981
Scopus rating (2001): SJR 0.956 SNIP 0.863
Scopus rating (2000): SJR 0.707 SNIP 1.009
Scopus rating (1999): SJR 0.691 SNIP 1.06
Original language: English
Source: orbit
Source-ID: 208513
Research output: Research - peer-review › Journal article – Annual report year: 2006