Filtration of Nanoparticles: Evolution of Cake Structure and Pressure-Drop

Publication: Research - peer-reviewJournal article – Annual report year: 2009

View graph of relations

The detailed three-dimensional accumulation of deposits and the build-up of pressuredrop during filtration of compressible gases laden with nanoparticles (diameter dp=50 nm) through capillaries (1–4 micron radius) was investigated by Langevin dynamics (LD) at Peclet number, Pe, 0.01–10. At low Pe, highly porous (98%) deposits were formed while at higher Pe the porosity was slightly reduced including a void cone upstream of the capillary inlet. Three distinct deposition regimes were identified: capillary deposition, clogging and cake growth. At the time of clogging (tcl), a filter cake with constant solid volume fraction began to form, accompanied with build-up of pressuredrop which was in excellent agreement with classic cake filtration theory. An expression for the solid volume fraction of the cake (fsd,c) was obtained as a sole function of Pe. In addition, the filtration efficiency became 1 after clogging, since the cake acts as a perfectly efficient filter. Penetration of nanoparticles takes place until the onset of cake filtration at high Pe (1–10) while for smaller ones (0.01–0.1) it is negligible at the employed capillary radii and length (10 micron). Analytical expressions for the time of capillary clogging and height of the void cone were derived and were in agreement to LD simulations. The height of the void cone is in the order of one capillary diameter at high Pe.
Original languageEnglish
JournalJournal of Aerosol Science
Publication date2009
Volume40
Issue11
Pages965-981
ISSN0021-8502
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 12
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 3941127