Fe-Ni Nanoparticles: A Multiscale First-Principles Study to Predict Geometry, Structure, and Catalytic Activity - DTU Orbit (08/12/2018)

Fe-Ni Nanoparticles: A Multiscale First-Principles Study to Predict Geometry, Structure, and Catalytic Activity

Nanoparticles of iron and nickel are promising candidates as nanosized soft magnetic materials and as catalysts for carbon nanotube synthesis and CO methanation, among others. To understand geometry- and size-dependent properties of these nanoparticles, phase diagram of Fe/Ni alloy nanoparticles was calculated by density functional theory and cluster expansion method. Ground state convex is presented for FCC, BCC, and icosahedral particles. Previous experimental observations were explained by using multiscale model for particles with realistic size (diameter ≥ 2 nm). At size 1.5 nm, geometry changes from BCC at low X(Ni) to icosahedral at high X(Ni). FCC is stabilized over icosahedral geometry by increasing number of atoms from 561 to 923. In large FCC particles, there is enrichment of Fe atoms from core to shell beneath surface, while surface and core are enriched by Ni atoms. Catalytic enhancement effect in CO methanation was found to be due to Ni incorporating in the active sites which brings adsorption energy of oxygen closer to the optimum. The predicted phase diagrams and implications on catalysis are expected to help rationalisation of experimental results and provide guidance for design of Fe/Ni-based nanomaterials.

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Atomic scale modelling and materials, Aalto University
Contributors: Teeriniemi, J., Melander, M., Lipasti, S., Hatz, R., Laasonen, K.
Pages: 1667-1674
Publication date: 2017
Peer-reviewed: Yes

Publication information
Volume: 121
Issue number: 3
ISSN (Print): 1932-7447
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.58 SJR 2.135 SNIP 1.147
Web of Science (2017): Impact factor 4.484
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.48 SJR 1.964 SNIP 1.195
Web of Science (2016): Impact factor 4.536
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.68 SJR 1.886 SNIP 1.26
Web of Science (2015): Impact factor 4.509
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 5.08 SJR 2.032 SNIP 1.447
Web of Science (2014): Impact factor 4.772
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 5.14 SJR 2.143 SNIP 1.445
Web of Science (2013): Impact factor 4.835
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 4.98 SJR 2.529 SNIP 1.461
Web of Science (2012): Impact factor 4.814
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1