Female nutrition and assisted reproduction in European eel: influences on oogenesis and egg quality

The European eel (Anguilla anguilla) has an enigmatic life-cycle. One of its most unique features is the 5000 to 6000 km separating the growth areas in Europe and North Africa from the spawning grounds in the Sargasso Sea. Even more enigmatic is the fact that naturally matured eels have never been caught and thus, spawning in the wild has never been observed. Because sexual maturation is blocked until the silvering phase and start of spawning migration, eels do not mature spontaneously in captivity and gonad development is induced by the application of exogenous hormones. In female eels, induction of egg production involves a long-term hormonal treatment of salmon or carp pituitary extracts (SPE or CPE) followed by the induction of oocyte maturation and ovulation which includes a SPE primer and a maturation-inducing hormone (MIH), generally 17α, 20β-dihydroxy-4-pregnen-3-one (DHP).

Recent progress in techniques for induction of maturation and fertilization of the eggs has enabled the production of many viable eggs and yolk-sac larvae that are able of exogenous feeding. The present studies have contributed to this progress by addressing some of the challenges commonly associated with the induction of female maturation and egg quality. The main objectives of this PhD study were to improve female response to hormonal treatments and resulting egg quality. These challenges were addressed by working with both cultured and wild female eels, testing different broodstock diets and hormonal treatments, and identifying possible factors associated with egg quality. The results showed that dietary fatty acid composition has a significant influence on ovarian development in response to hormonal treatments. During oocyte maturation and ovulation, the expression of hormone receptors at the time SPE and DHP were administrated differed between high and low egg quality groups. It appears that a mismatch between hormone receptor expression and the administration of SPE and DHP may be determinant for acquisition of oocyte developmental competence. Moreover, lipid analysis of eggs obtained from wild-caught female eels showed that the level of most fatty acids were similar between high and low quality eggs. Additionally, levels of essential fatty acids were considerable different from those reported elsewhere for cultured European female eel. Experiments part of this PhD project resulted in a high number of high quality eggs which enabled us to determine the relation between oocyte stage at the time oocyte maturation and ovulation are induced, and egg quality for the first time. As a result, we presented improved guidelines to induce oocyte maturation and ovulation, based on a lipid droplet-based oocyte maturation scale, which may result in an increase in production of viable European eel eggs. Overall, this PhD project contributed to the development of assisted reproduction procedures by providing new and valuable knowledge about the factors influencing the maturational response of European female eels to hormonal treatments and resulting egg quality.

General information

State: Published
Organisations: National Institute of Aquatic Resources, Section for Marine Living Resources
Contributors: da Silva, F.
Number of pages: 121
Publication date: 2017

Publication information

Publisher: DTU aqua. National Institute of Aquatic Resources
Original language: English
Research output: Research › Ph.D. thesis – Annual report year: 2017