Feedback analysis of transimpedance operational amplifier circuits

Feedback analysis of transimpedance operational amplifier circuits
The transimpedance or current feedback operational amplifier (CFB op-amp) is reviewed and compared to a conventional voltage mode op-amp using an analysis emphasizing the basic feedback characteristics of the circuit. With this approach the paradox of the constant bandwidth obtained from CFB op-amps is explained. It is demonstrated in a simple manner that the constant gain-bandwidth product of the conventional op-amp and the constant bandwidth of the CFB op-amp are both in accordance with basic feedback theory and that the differences between the traditional op-amp and the CFB op-amp are due to different ways of controlling the closed-loop gain. For the traditional op-amp the closed-loop gain is altered by altering the loop gain, whereas the closed-loop gain in a CFB op-amp configuration is altered by altering the input attenuation to the feedback loop while maintaining a constant-loop gain.

General information
State: Published
Organisations: Electronics, Department of Electrical Engineering
Contributors: Bruun, E.
Pages: 275-278
Publication date: 1993
Peer-reviewed: Yes

Publication information
Journal: IEEE Transactions on Circuits and Systems Part 1: Regular Papers
Volume: 40
Issue number: 4
ISSN (Print): 1549-8328
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.68 SJR 0.869 SNIP 1.961
Web of Science (2017): Impact factor 2.823
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.91 SJR 0.884 SNIP 1.914
Web of Science (2016): Impact factor 2.407
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.6 SJR 1.173 SNIP 2.098
Web of Science (2015): Impact factor 2.393
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.59 SJR 1.143 SNIP 2.301
Web of Science (2014): Impact factor 2.403
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.67 SJR 1.207 SNIP 2.258
Web of Science (2013): Impact factor 2.303
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.16 SJR 1.05 SNIP 2.073
Web of Science (2012): Impact factor 2.24
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.82 SJR 0.951 SNIP 1.841
Web of Science (2011): Impact factor 1.97
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.764 SNIP 1.739
Web of Science (2010): Impact factor 1.58
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.975 SNIP 1.93
Web of Science (2009): Indexed yes
Scopus rating (2008): SJR 1.561 SNIP 2.362
Scopus rating (2007): SJR 1.157 SNIP 2.125
Scopus rating (2006): SJR 1.021 SNIP 2.249
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.804 SNIP 2.346
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.998 SNIP 2.328
Scopus rating (2003): SJR 0.888 SNIP 1.832
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.954 SNIP 1.904
Scopus rating (2001): SJR 0.804 SNIP 1.307
Scopus rating (2000): SJR 0.913 SNIP 1.46
Scopus rating (1999): SJR 0.942 SNIP 1.264
Original language: English
Electronic versions:
Bruun.pdf
DOIs:
10.1109/81.224302

Bibliographical note
Copyright: 1993 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained from the IEEE
Source: orbit
Source-ID: 253156
Research output: Research - peer-review › Journal article – Annual report year: 1993