Feature Extraction Using Discrete Wavelet Transform for Gear Fault Diagnosis of Wind Turbine Gearbox - DTU Orbit (19/02/2019)

Feature Extraction Using Discrete Wavelet Transform for Gear Fault Diagnosis of Wind Turbine Gearbox

Vibration diagnosis is one of the most common techniques in condition evaluation of wind turbine equipped with gearbox. On the other side, gearbox is one of the key components of wind turbine drivetrain. Due to the stochastic operation of wind turbines, the gearbox shaft rotating speed changes with high percentage, which limits the application of traditional vibration signal processing techniques, such as fast Fourier transform. This paper investigates a new approach for wind turbine high speed shaft gear fault diagnosis using discrete wavelet transform and time synchronous averaging. First, the vibration signals are decomposed into a series of subbands signals with the use of multiresolution analytical property of the discrete wavelet transform. Then, 22 condition indicators are extracted from the TSA signal, residual signal, and difference signal. Through the case study analysis, a new approach reveals the most relevant condition indicators based on vibrations that can be used for high speed shaft gear spalling fault diagnosis and their tracking abilities for fault degradation progression. It is also shown that the proposed approach enhances the gearbox fault diagnosis ability in wind turbines. The approach presented in this paper was programmed in Matlab environment using data acquired on a 2MW wind turbine.

General information
State: Published
Organisations: Department of Electrical Engineering, Center for Electric Power and Energy, Electric Equipment Technologies, Kreka Coal Mine, University of Novi Sad, Brüel and Kjær Sound and Vibration Measurement A/S
Contributors: Bajric, R., Zuber, N., Skrimpas, G. A., Mijatovic, N.
Number of pages: 10
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Shock and Vibration
Volume: 2016
Article number: 6748469
ISSN (Print): 1070-9622
Ratings:
 BFI (2019): BFI-level 1
 Web of Science (2019): Indexed yes
 BFI (2018): BFI-level 1
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 1
 Scopus rating (2017): CiteScore 1.32 SJR 0.468 SNIP 0.893
 Web of Science (2017): Impact factor 1.857
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 1
 Scopus rating (2016): CiteScore 1.05 SJR 0.412 SNIP 0.903
 Web of Science (2016): Impact factor 1.281
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 1
 Scopus rating (2015): CiteScore 0.92 SJR 0.374 SNIP 0.802
 Web of Science (2015): Impact factor 0.88
 BFI (2014): BFI-level 1
 Scopus rating (2014): CiteScore 0.95 SJR 0.474 SNIP 1.157
 Web of Science (2014): Impact factor 0.722
 Web of Science (2014): Indexed yes
 BFI (2013): BFI-level 1
 Scopus rating (2013): CiteScore 0.71 SJR 0.325 SNIP 0.776
 Web of Science (2013): Impact factor 0.608
 ISI indexed (2013): ISI indexed yes
 BFI (2012): BFI-level 1
 Scopus rating (2012): CiteScore 0.62 SJR 0.347 SNIP 0.966
 Web of Science (2012): Impact factor 0.535
 ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.43 SJR 0.297 SNIP 0.751
Web of Science (2011): Impact factor 0.26
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.244 SNIP 0.516
Web of Science (2010): Impact factor 0.26
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.27 SNIP 0.478
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.348 SNIP 0.611
Scopus rating (2007): SJR 0.522 SNIP 0.998
Scopus rating (2006): SJR 0.303 SNIP 0.279
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.217 SNIP 0.426
Scopus rating (2004): SJR 0.327 SNIP 0.529
Scopus rating (2003): SJR 0.273 SNIP 0.526
Scopus rating (2002): SJR 0.289 SNIP 0.742
Scopus rating (2001): SJR 0.305 SNIP 0.718
Scopus rating (2000): SJR 0.543 SNIP 0.558
Scopus rating (1999): SJR 0.439 SNIP 0.606
Original language: English
Electronic versions:
Feature_Extraction_Using_Discrete.pdf
DOIs:
10.1155/2016/6748469

Bibliographical note
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Source: PublicationPreSubmission
Source-ID: 119581353
Research output: Research - peer-review › Journal article – Annual report year: 2016