Fault-tolerant Control of Discrete-time LPV systems using Virtual Actuators and Sensors - DTU Orbit (22/12/2018)

Fault-tolerant Control of Discrete-time LPV systems using Virtual Actuators and Sensors

This paper proposes a new fault-tolerant control (FTC) method for discrete-time linear parameter varying (LPV) systems using a reconfiguration block. The basic idea of the method is to achieve the FTC goal without re-designing the nominal controller by inserting a reconfiguration block between the plant and the nominal controller. The reconfiguration block is realized by an LPV virtual actuator and an LPV virtual sensor. Its goal is to transform the signals from the faulty system such that its behavior is similar to that of the nominal system from the viewpoint of the controller. Furthermore, it transforms the output of the controller for the faulty system such that the stability and performance goals are preserved. Input-to-state stabilizing LPV gains of the virtual actuator and sensor are obtained by solving linear matrix inequalities (LMIs). We show that separate design of these gains guarantees the input-to-state stability (ISS) of the closed-loop reconfigured system. Moreover, we obtain performances in terms of the ISS gains for the virtual actuator, the virtual sensor and their interconnection. Minimizing these performances is formulated as convex optimization problems subject to LMI constraints. Finally, the effectiveness of the method is demonstrated via a numerical example and stator current control of an induction motor.

General information
State: Published
Organisations: Department of Electrical Engineering, Automation and Control, Aalborg University
Contributors: Tabatabaei pour, M., Stoustrup, J., Bak, T.
Pages: 707–734
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: International Journal of Robust and Nonlinear Control
Volume: 25
Issue number: 5
ISSN (Print): 1049-8923
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.26 SJR 2.028 SNIP 1.942
Web of Science (2017): Impact factor 3.856
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.57 SJR 1.772 SNIP 1.687
Web of Science (2016): Impact factor 3.393
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.12 SJR 1.992 SNIP 1.698
Web of Science (2015): Impact factor 2.527
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.51 SJR 2.037 SNIP 1.911
Web of Science (2014): Impact factor 3.176
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.41 SJR 1.86 SNIP 1.91
Web of Science (2013): Impact factor 2.652
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.83 SJR 1.685 SNIP 1.791
Web of Science (2012): Impact factor 1.9
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.41 SJR 1.77 SNIP 1.769
Web of Science (2011): Impact factor 1.554