Fast simulation of non-linear pulsed ultrasound fields using an angular spectrum approach - DTU Orbit (22/12/2018)

Fast simulation of non-linear pulsed ultrasound fields using an angular spectrum approach

A fast non-linear pulsed ultrasound field simulation is presented. It is implemented based on an angular spectrum approach (ASA), which analytically solves the non-linear wave equation. The ASA solution to the Westervelt equation is derived in detail. The calculation speed is significantly increased compared to a numerical solution using an operator splitting method (OSM). The ASA has been modified and extended to pulsed non-linear ultrasound fields in combination with Field II, where any array transducer with arbitrary geometry, excitation, focusing and apodization can be simulated. The accuracy of the nonlinear ASA is compared to the non-linear simulation program – Abersim, which is a numerical solution to the Burgers equation based on the OSM. Simulations are performed for a linear array transducer with 64 active elements, focus at 40 mm, and excitation by a 2-cycle sine wave with a center frequency of 5 MHz. The speed is increased approximately by a factor of 140 and the calculation time is 12 min with a standard PC, when simulating the second harmonic pulse at the focal point. For the second harmonic point spread function the full width error is 1.5% at 6 dB and 6.4% at 12 dB compared to Abersim.

General information

State: Published
Organisations: Department of Electrical Engineering, Center for Fast Ultrasound Imaging, Biomedical Engineering
Contributors: Du, Y., Jensen, J. A.
Pages: 588–594
Publication date: 2013
Peer-reviewed: Yes

Publication information

Journal: Ultrasonics
Volume: 53
Issue number: 2
ISSN (Print): 0041-624X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.72 SJR 0.973 SNIP 1.714
Web of Science (2017): Impact factor 2.377
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.51 SJR 0.834 SNIP 1.728
Web of Science (2016): Impact factor 2.327
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.23 SJR 0.708 SNIP 1.655
Web of Science (2015): Impact factor 1.954
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.41 SJR 0.848 SNIP 2.156
Web of Science (2014): Impact factor 1.942
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.12 SJR 0.67 SNIP 1.727
Web of Science (2013): Impact factor 1.805
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.09 SJR 0.675 SNIP 1.886
Web of Science (2012): Impact factor 2.028
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.2 SJR 0.707 SNIP 1.72