Fast large-scale clustering of protein structures using Gauss integrals

Publication: Research - peer-reviewJournal article – Annual report year: 2011

View graph of relations

Motivation: Clustering protein structures is an important task in structural bioinformatics. De novo structure prediction, for example, often involves a clustering step for nding the best prediction. Other applications include assigning proteins to fold families and analyzing molecular dynamics trajectories. Results: We present Pleiades, a novel approach to clustering protein structures with a rigorous mathematical underpinning. The method approximates clustering based on the root mean square deviation by rst mapping structures to Gauss integral vectors – which were introduced by Røgen and co-workers – and subsequently performing K-means clustering. Conclusions: Compared to current methods, Pleiades dramatically improves on the time needed to perform clustering, and can cluster a signicantly larger number of structures, while providing state-ofthe- art results. The number of low energy structures generated in a typical folding study, which is in the order of 50,000 structures, can be clustered within seconds to minutes.
Original languageEnglish
JournalBioinformatics
Publication date2011
Volume28
Issue4
Pages510-515
ISSN1367-4803
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 7
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 6624977