Farming different species in RAS in Nordic countries: Current status and future perspectives

Publication: Research - peer-reviewJournal article – Annual report year: 2012

Documents

DOI

View graph of relations

Recirculating aquaculture systems (RAS) have gained increasing interest in recent years as a means to intensify fish production while at the same time minimize the environmental impact. Considerable hands-on experience has accumulated within the Nordic countries over the last 20-30 years in designing, building, and operating intensive land-based RAS for different species. This study compiles and assesses published literature along with un-published hands-on experiences with rearing different species in RAS in the Nordic countries, including Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss), European eel (Anguilla anguilla), pike perch (Stizostedion lucioperca), Arctic char (Salvelinus alpinus), sturgeon (order Acipenseriformes), Nile tilapia (Oreochromis niloticus), and European lobster (Homarus gammarus). High capital costs are one of the biggest challenges to sustainable RAS calling for large scale intensive productions to reduce investment -and operation costs. Consistent with this, production of Atlantic salmon smolts in indoor RAS and rainbow trout in outdoor Model-Trout-Farms (MTFs) have been the commercially most successful productions so far. Aside from end-of-pipe treatment including sludge handling and efficient nitrogen removal, much of the RAS technology applied is well known and is, as such, more or less ready to apply for culturing a variety of species. Successful production of “new” species in RAS therefore largely comes down to identifying the biological requirements of that specific species, and designing the RAS to fulfill and support the specific requirements. Well established brood-stocks and continuous supply of offspring is furthermore a prerequisite for successful RAS production of most species. Successful operations of less intensive RAS such as aquaponic systems appear to be feasible primarily when culturing more exotic species targeted for selected customers
Original languageEnglish
JournalAquacultural Engineering
Publication date2013
Volume53
Pages2-13
ISSN0144-8609
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 4
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 51114209