Failure of total hip implants: metals and metal release in 52 cases - DTU Orbit (18/03/2019)

Failure of total hip implants: metals and metal release in 52 cases

Background. The pathogenesis of total joint replacement failure is multifactorial. One hypothesis suggests that corrosion and wear of alloys result in metal ion release, which may then cause sensitization and even implant failure, owing to the acquired immune reactivity.

Objectives. To assess cobalt, nickel and chromium(VI) release from, and the metal composition of, failed metal-on-ethylene total hip replacements. **Materials/methods.** Implant components from 52 revision cases were evaluated with spot tests for free nickel, cobalt, and chromium (VI) ions. Implant composition was determined with X-ray fluorescence spectroscopy, and information on the reason for revision and complications in relation to surgery was collected from the medical charts when possible (72%). For 10 implants, corrosion was further characterized with scanning electron microscopy.

Results. We detected cobalt release from three of 38 removed femoral heads and from one of 24 femoral stems. Nickel release was detected from one of 24 femoral stems. No chromium(VI) release was detected.

Conclusions. We found that cobalt and nickel were released from some failed total hip arthroplasties, and corrosion was frequently observed. Metal ions and particles corroded from metal-on-polyethylene may play a role in the complex aetiopathology of implant failure.

General information

State: Published
Organisations: Department of Mechanical Engineering, Materials and Surface Engineering, Stockholm University, Copenhagen University Hospital, Aarhus University, Karolinska Institutet
Contributors: Jakobsen, S. S., Lidén, C., Søballe, K., Johansen, J. D., Menné, T., Lundgren, L., Bregnbak, D., Møller, P., Jellesen, M. S., Thyssen, J. P.
Pages: 319–325
Publication date: 2014
Peer-reviewed: Yes

Publication information

Journal: Contact Dermatitis
Volume: 71
ISSN (Print): 0105-1873
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.24 SJR 0.836 SNIP 1.592
Web of Science (2017): Impact factor 4.275
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.47 SJR 0.862 SNIP 1.665
Web of Science (2016): Impact factor 4.335
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.85 SJR 1.007 SNIP 1.486
Web of Science (2015): Impact factor 5.692
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.02 SJR 0.886 SNIP 1.684
Web of Science (2014): Impact factor 3.747
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 1.87 SJR 0.822 SNIP 1.423
Web of Science (2013): Impact factor 3.624
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.98 SJR 0.882 SNIP 1.355
Web of Science (2012): Impact factor 2.925
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 1.91 SJR 1.035 SNIP 1.132
Web of Science (2011): Impact factor 3.509
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 0.826 SNIP 1.167
Web of Science (2010): Impact factor 3.672
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 0.793 SNIP 1.177
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 0.654 SNIP 1.277
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.668 SNIP 1.331
Scopus rating (2006): SJR 0.566 SNIP 1.102
Scopus rating (2005): SJR 0.548 SNIP 1.021
Scopus rating (2004): SJR 0.54 SNIP 0.867
Scopus rating (2003): SJR 0.584 SNIP 1.034
Scopus rating (2002): SJR 0.612 SNIP 1.023
Scopus rating (2001): SJR 0.517 SNIP 1.117
Scopus rating (2000): SJR 0.443 SNIP 1.113
Scopus rating (1999): SJR 0.419 SNIP 1.013
Original language: English
Keywords: Chromium, Cobalt, Metal allergy, Nickel, Spot test, Total joint replacement
DOIs:
10.1111/cod.12275
Research output: Research - peer-review › Journal article – Annual report year: 2014