Facile method to synthesis hybrid phase 1T@2H MoSe2 nanostructures for rechargeable lithium ion batteries

Facile method to synthesis hybrid phase 1T@2H MoSe2 nanostructures for rechargeable lithium ion batteries

Energy storage devices have become vital parts of our routine life. Among the numerous candidates, lithium ion batteries are considered the most favorable energy storage systems. MoSe2 consists of Se–Mo–Se atom layers bounded with van-der Waals forces and is highly favored for lithium ion intercalation and extraction. This paper establishes a simple and economical one-pot chemical method to synthesize MoSe2 nanostructures for lithium ion battery anode material. Raman scattering confirmed the 1T@2H MoSe2 mixed phase structure, transmission electron microscopy showed 2H and 1T phase contours in the MoSe2 nanosheet, and scanning electron microscopy showed the nanograin honeycomb structured morphology. The 1T@2H MoSe2 nanostructures deliver enhanced primary discharge capacity 843 mAh/g at 100 mA/g with 99% Coulombic efficiency after 100 cycles. Electrochemical results confirmed the 1T@2H MoSe2 nanostructure would be an excellent anode material and a promising candidate for high performance lithium ion batteries.

General information
State: Published
Organisations: Imaging and Structural Analysis, Department of Energy Conversion and Storage, Dongguk University, Sejong University
Contributors: Vikraman, D., Hussain, S., Prasanna, K., Karuppasamy, K., Jung, J., Kim, H.
Pages: 333-339
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Journal of Electroanalytical Chemistry
Volume: 833
ISSN (Print): 1572-6657
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.13 SJR 0.765 SNIP 0.824
Web of Science (2017): Impact factor 3.235
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.97 SJR 0.752 SNIP 0.864
Web of Science (2016): Impact factor 3.012
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.73 SJR 0.714 SNIP 0.865
Web of Science (2015): Impact factor 2.822
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.81 SJR 0.833 SNIP 0.949
Web of Science (2014): Impact factor 2.729
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.92 SJR 0.91 SNIP 1.087
Web of Science (2013): Impact factor 2.871
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.72 SJR 1.082 SNIP 1.03
Web of Science (2012): Impact factor 2.672
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.89 SJR 1.072 SNIP 1.13
Web of Science (2011): Impact factor 2.905
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.161 SNIP 1.104
Web of Science (2010): Impact factor 2.733
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.015 SNIP 1.118
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.266 SNIP 1.133
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.279 SNIP 1.235
Web of Science (2007): Indexed yes
Scopus rating (2005): SJR 1.238 SNIP 1.216
Scopus rating (2004): SJR 1.318 SNIP 1.462
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.185 SNIP 1.172
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.234 SNIP 1.261
Scopus rating (2001): SJR 1.221 SNIP 1.238
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.027 SNIP 0.99
Scopus rating (1999): SJR 0.997 SNIP 1.137
Original language: English
Keywords: Lithium ion batteries, MoSe2, 1T @2H phase, TEM, Raman
DOIs: 10.1016/j.jelechem.2018.12.013
Source: FindIt
Source-ID: 2442389076
Research output: Research - peer-review > Journal article – Annual report year: 2019