Fabrication of high aspect ratio TiO$_2$ and Al$_2$O$_3$ nanogratings by atomic layer deposition - DTU Orbit (28/12/2018)

Fabrication of high aspect ratio TiO$_2$ and Al$_2$O$_3$ nanogratings by atomic layer deposition

The authors report on the fabrication of TiO$_2$ and Al$_2$O$_3$ nanostructured gratings with an aspect ratio of up to 50. The gratings were made by a combination of atomic layer deposition (ALD) and dry etch techniques. The workflow included fabrication of a Si template using deep reactive ion etching followed by ALD of TiO$_2$ or Al$_2$O$_3$. Then, the template was etched away using SF$_6$ in an inductively coupled plasma tool, which resulted in the formation of isolated ALD coatings, thereby achieving high aspect ratio grating structures. SF$_6$ plasma removes silicon selectively without any observable influence on TiO$_2$ or Al$_2$O$_3$, thus revealing high selectivity throughout the fabrication. Scanning electron microscopy was used to analyze every fabrication step. Due to nonreleased stress in the ALD coatings, the top parts of the gratings were observed to bend inward as the Si template was removed, thus resulting in a gradual change in the pitch value of the structures. The pitch on top of the gratings is 400 nm, and it gradually reduces to 200 nm at the bottom. The form of the bending can be reshaped by Ar$^+$ ion beam etching. The chemical purity of the ALD grown materials was analyzed by x-ray photoelectron spectroscopy. The approach presented opens the possibility to fabricate high quality optical metamaterials and functional nanostructures.

General information

State: Published
Organisations: Department of Photonics Engineering, Plasmonics and Metamaterials, DTU Danchip
Contributors: Shkondin, E., Takayama, O., Michael-Lindhard, J., Larsen, P. V., Mar, M. D., Jensen, F., Lavrinenko, A.
Number of pages: 6
Publication date: 2016
Peer-reviewed: Yes

Publication information

Volume: 34
Issue number: 3
Article number: 031605
ISSN (Print): 0734-2101
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 1.46 SJR 0.52 SNIP 0.664
Web of Science (2017): Impact factor 1.761
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 1.04 SJR 0.579 SNIP 0.727
Web of Science (2016): Impact factor 1.374
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 0.77 SJR 0.65 SNIP 0.798
Web of Science (2015): Impact factor 1.724
Scopus rating (2014): CiteScore 0.73 SJR 0.828 SNIP 1.046
Web of Science (2014): Impact factor 2.322
Scopus rating (2013): CiteScore 0.86 SJR 0.713 SNIP 0.892
Web of Science (2013): Impact factor 2.14
Scopus rating (2012): CiteScore 1.09 SJR 0.719 SNIP 1.017
Web of Science (2012): Impact factor 1.432
Scopus rating (2011): CiteScore 1.24 SJR 0.686 SNIP 0.815
Web of Science (2011): Impact factor 1.253
Scopus rating (2010): SJR 0.832 SNIP 0.824
Scopus rating (2009): SJR 0.831 SNIP 0.815
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.952 SNIP 0.935
Scopus rating (2007): SJR 1.035 SNIP 0.906
Scopus rating (2006): SJR 1.05 SNIP 1.067
Scopus rating (2005): SJR 1.15 SNIP 1.043
Scopus rating (2004): SJR 1.21 SNIP 1.176
Scopus rating (2003): SJR 1.271 SNIP 1.108