We present a thorough numerical analysis of a highly birefringent slotted porous-core circular photonic crystal fiber (PCF) for terahertz (THz) wave guidance. The slot shaped air-holes break the symmetry of the porous-core which offers a very high birefringence whereas the compact geometry of the circular cladding confines most of the power in the fiber-core. The fiber structure reported in this letter exhibits simultaneously ultrahigh modal birefringence of 7.5×10^{-2} and a very low effective absorption loss of 0.07 cm$^{-1}$ for y-polarization mode at an operating frequency of 1 THz. It is highly anticipated that the slotted-core waveguide would be of very much convenience in many polarization maintaining THz appliances.