Extension of internationalisation models drivers and processes for the globalisation of product development - DTU Orbit (07/02/2019)

Extension of internationalisation models drivers and processes for the globalisation of product development: a comparison of Danish and Chinese engineering firms

This paper develops an extension to established production- and supply chain management focused internationalisation models. It applies explorative case studies in Danish and Chinese engineering firms to discover how the globalisation process of product development differs from Danish and Chinese perspectives. The paper uses internationalisation and global product development theory to explain similarities and differences in the approaches. Grounded in case study results, a new model for internationalisation is proposed. The new model expands the internationalisation process model to include steps of product development and collaborative distributed development beyond sourcing, sales and production elements. The paper then provides propositions for how to further develop the suggested model, and how western companies can learn from the Chinese approaches, and globalise their product development activities from the front end of the value chain rather than from the back-end.

General information
State: Published
Organisations: Department of Management Engineering, Technology and Innovation Management, Engineering Systems Group, Engineering Systems, Imperial College London
Contributors: Søndergaard, E. S., Oehmen, J., Ahmed-Kristensen, S.
Pages: 1112-1123
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Production Planning & Control
Volume: 27
Issue number: 13
ISSN (Print): 0953-7287
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.84 SJR 1.256 SNIP 1.281
Web of Science (2017): Impact factor 2.33
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.45 SJR 1.109 SNIP 1.313
Web of Science (2016): Impact factor 2.369
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.23 SJR 1.237 SNIP 1.3
Web of Science (2015): Impact factor 1.532
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.95 SJR 0.994 SNIP 1.326
Web of Science (2014): Impact factor 1.466
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.29 SJR 0.638 SNIP 1.086
Web of Science (2013): Impact factor 0.991
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.21 SJR 0.655 SNIP 0.887
Web of Science (2012): Impact factor 0.6
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1