Extended FEM modeling of crack paths near inclusions

Publication: Research - peer-reviewJournal article – Annual report year: 2011

View graph of relations

The extended FEM is applied to model crack growth near inclusions. A procedure to handle different propagation rates at different crack tips is presented. The examples considered investigate uniform tension as well as equibiaxial tension under plane strain conditions. A parameter study analyzes the effects on the crack path when changing the relative stiffness between inclusion and matrix material, the relative distance between initial crack and inclusion, and the size of the inclusion. Both edge cracks and internal cracks are studied. An example with an internal crack near an inclusion is presented, where both crack tips propagate at different growth rates until one crack tip eventually stops growing, as the related energy release rate drops below the critical value. In another example, only one crack tip propagates initially, but eventually, the energy release rate of the second crack tip becomes critical, and both crack tips propagate. Finally, an example of two cracks near an inclusion is presented in which up to four crack tips propagate simultaneously.
Original languageEnglish
JournalInternational Journal for Numerical Methods in Engineering
Publication date2012
Volume89
Pages786-804
ISSN0029-5981
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 1

Keywords

  • Individual crack increments, Crack growth, Inclusions, LEFM, X-FEM
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 6543835