Ex-situ biogas upgrading and enhancement in different reactor systems - DTU Orbit (20/10/2018)

Ex-situ biogas upgrading and enhancement in different reactor systems
Biogas upgrading is envisioned as a key process for clean energy production. The current study evaluates the efficiency of different reactor configurations for ex-situ biogas upgrading and enhancement, in which externally provided hydrogen and carbon dioxide were biologically converted to methane by the action of hydrogenotrophic methanogens. The methane content in the output gas of the most efficient configuration was >98%, allowing its exploitation as substitute to natural gas. Additionally, use of digestate from biogas plants as a cost efficient method to provide all the necessary nutrients for microbial growth was successful. High-throughput 16S rRNA sequencing revealed that the microbial community was resided by novel phylootypes belonging to the uncultured order MBA08 and to Bacteroidales. Moreover, only hydrogenotrophic methanogens were identified belonging to Methanothermobacter and Methanoculleus genera. Methanothermobacter thermautotrophicus was the predominant methanogen in the biofilm formed on top of the diffuser surface in the bubble column reactor.

General information
State: Published
Organisations: Department of Environmental Engineering, Residual Resource Engineering, Technical University of Denmark, University of Padova
Number of pages: 9
Pages: 429-437
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Bioresource Technology
Volume: 225
ISSN (Print): 0960-8524
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 6.28 SJR 2.029 SNIP 1.799
Web of Science (2017): Impact factor 5.807
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.94 SJR 2.215 SNIP 1.932
Web of Science (2016): Impact factor 5.651
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.47 SJR 2.243 SNIP 1.897
Web of Science (2015): Impact factor 4.917
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.3 SJR 2.399 SNIP 2.087
Web of Science (2014): Impact factor 4.494
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.97 SJR 2.405 SNIP 2.477
Web of Science (2013): Impact factor 5.039
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 5.25 SJR 2.334 SNIP 2.461
Web of Science (2012): Impact factor 4.75
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2