Expression of innate immune genes, proteins and microRNAs in lung tissue of pigs infected experimentally with influenza virus (H1N2) - DTU Orbit (09/01/2019)

Expression of innate immune genes, proteins and microRNAs in lung tissue of pigs infected experimentally with influenza virus (H1N2)

This study aimed at providing a better understanding of the involvement of innate immune factors, including miRNA, in the local host response to influenza virus infection. Twenty pigs were challenged by influenza A virus subtype H1N2. Expression of microRNA (miRNA), mRNA and proteins were quantified in lung tissue at different time points after challenge (24 h, 72 h and 14 d post-infection (p.i.). Several groups of genes were significantly regulated according to time point and infection status including pattern recognition receptors (TLR2, TLR3, TLR7, retinoic acid-inducible gene I, melanoma differentiation associated protein-5), IFN and IFN-induced genes (IFN-β, IFN-γ, IRF7, STAT1, ISG15 and OASL), cytokines (IL-1 β, IL-1RN, IL-6, IL-7, IL-10, IL-12A, TNF-α, CCL2, CCL3 and CXCL10) and several acute phase proteins. Likewise, the following miRNAs were differentially expressed in one or more time groups compared with the control pigs: miR-15a, miR-21, miR-146, miR-206, miR-223 and miR-451. At d 1 p.i. lung tissue protein levels of IL-6, IL-12 and IFN-α were significantly increased compared with the control group, and haptoglobin and C-reactive protein were significantly increased at d 3 p.i. Our results suggest that, in addition to a wide range of innate immune factors, miRNAs may also be involved in controlling acute influenza infection in pigs.

General information
State: Published
Organisations: National Veterinary Institute, Section for Immunology and Vaccinology, Section for Virology, Technical University of Denmark, IDT Biologika GmbH, University of Copenhagen
Pages: 531-544
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Innate Immunity
Volume: 19
Issue number: 5
ISSN (Print): 1753-4259
Ratings:
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.34 SJR 1.031 SNIP 0.686
Web of Science (2017): Impact factor 2.312
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.7 SJR 1.169 SNIP 0.816
Web of Science (2016): Impact factor 2.342
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.55 SJR 1.264 SNIP 0.836
Web of Science (2015): Impact factor 2.83
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.65 SJR 1.275 SNIP 0.965
Web of Science (2014): Impact factor 3.271
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.47 SJR 1.146 SNIP 0.825
Web of Science (2013): Impact factor 2.459
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.5 SJR 1.086 SNIP 0.859
Web of Science (2012): Impact factor 2.682
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1